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SUMMARY

The flow behind the attached curved shock near the nose of an
axlally symmetrical body placed in a uniform stream is investigated by
considering the perturbstions from the initial Taylor-Maccoll conical
solution. The first-order perturbation yields the ratio between the
initial radil of curvature of the shock wave and the body. When higher-
order perturbations are included, a regular shock wave near the nose leads
to a body shape which has a logarithmic singularity at the nose. I%
seems, therefore, that, for a given regular body, the shock-wave shape
probably has a singularity at the vertex, although the initial radius
of curvature remsins finite.

Numerical results are obtained for the first-order perturbation
equations, covering the cases with initial semivertex angle GS = 10°,

20°, and 30°, each at five different Mach numbers ranging approximately
from the minimum one for an attached conical shock to a value around 5.
For each value of 650, there is a critical Mach number, very close to

the minimum one for an attached conical shock, below which the ratio of
curvatures becomes negative. This Mach number has been conjectured by
Crocco in the two-dimensional case as the probable starting point for
the detached shock wave. Its significance is discussed here on the basis
of recent works by Thomas. The variation of the ratio of curvatures with
Mach number is found to be of the same nature as that in the two-
dimensional case, though the extent is much larger.

INTRODUCTION

The problem of the curved shock in two dimensions was first dis-
cussed by Crocco (reference 1) in 1937. Recently, papers by various
authors (references 2 to 5) again indicate the current interest in the
relation between the curvatures of the shock and the body. Lin and
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Rubinov (reference 5) treated the flow behind curved shocks from a
general viewpoint by expanding the hydrodynemical quantities behind the
shock into Taylor series in Cartesian coordinates. They indicated that,
by so doing, many problems in the axially symmetrical case could be
solved in parallel with the two-dimensional ones. Nevertheless, when
the curved shock is caused by a sharp-nosed body of revolution, singu-
larity of the expansion is encountered at the nose and a different
method should be gpplied.

This report represents an investigation of this particular problem,
namely, the flow in the neighborhood of the sharp nose of a body of
revolution, by means of a perturbation scheme. The difficulty arising
out of an expansion in Cartesian coordinates i1s avoided by using polar
coordinates., The relation between the initial curvatures of the shock
and the body is thus obtained. On reaching the surface of the body,
the first-order solution shows a logarithmic singularity at the initial
semivertex angle, thereby apparently limiting the applicability only to
concave bodies, It is suspected, however, that this difficulty actually
arises from the asymptotic representation of the solution as used in
this report and that the application of the result to convex bodies is
permissible if the actual solution satisfies certain continuity condi-
tions. It also appears from the asymptotic solution used in this
report that, when high-order approximations are included, a regular
shock wave would require the body behind it to have a singularity, pre-
sumably logarithmic in nature, at the nose. Conversely, this means
that, if the body is representable by a regular function, the shock-wave
shape might have a logarithmic singularity near the nose. The curvature
of the shock would, however, stand in a finite ratio with the curvature
of the body.

Numerical integrations have been carried out for the first-order
perturbations for bodies with semivertex angles 10°, 20°, and 30° and
a number of free-stream Mach numbers up to around 5. The variation of
the ratio of the initial radii of curvature is found to be similar to
that in the two-dimensional case as computed by Thomas (reference 3) or
Munk and Prim (reference 4). A critical point beyond which the ratio
of curvatures becomes negative likewise exists, such a point in the two-
dimensional case being pointed out by Crocco (reference 1) as the prob-
gble limit of an actually attached shock wave.

The results of this report perhaps have significance as being the
first step in clarifying the general problem of flow past an arbitrary
body with an attached shock wave. On the practical side, its immediate
gpplication is to improve the accuracy of the usual method of charac-
teristics by starting it by means of numerical computation at points
avay from the troublesome axis of symmetry. When the initial Teylor-
Maccoll solution gives subsonic or partislly subsonic flow behind the
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shock, the method of numerical integration by means of characteristics
will fail to have any starting point. The present solution, if its
validity is substantiated by experiment in this range of mixed subsonic
and supersonic flows behind the shock, may then be used to determine
approximately the sonic line, from which subsequent calculations may
be made in the usual manner.

This investigation was carried out at the Massachusetts Institute
of Technology under the sponsorship and with the financial assistance
of the National Advisory Committee for Aeronautics.

The suthors are indebted to Professor Z. Kopal and his staff in
the Center of Analysis, M.I.T., for the numerical computations in this

report.
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SYMBOLS

polar coordinates in a meridian plane

velocity components in r- and 6-directions, pressure,
and density, respectively

"limit" velocity, a constant for isoenergetic flow

free-stream velocity, pressure, density, and Mach
number, respectively

Taylor-Maccoll solution for initial vertex angle
perturbations from initial Taylor-Maccoll solution

factors depending on 6 in first-order perturbations

factors depending on € in nth-order perturbations

velocity components at the shock in tangential and
normal directions, respectively

radius of curvature

angle between shock wave and uniform stream




L NACA TN 2505

Fq,F5,F

1>"20°3

G- .G~.C coefficient functions in differential equations for
17273 first-order perturbations

Hl,Hg,H3 :

E,n,¢ nondimensional representation of u;, Vi, and pg,

respectively ’

85808 regular part of coefficient functioms F;, Fp, and
17273 so forth throughout interval of 6

hl,ha’h3

Fkl’FkE’ e o o coefficlent functions in differential equations for
(kx + 1)th-order perturbations

f195Tx0s - - - regular part of coefficient functions Fy,, Fyp, and
so forth throughout interval of 6

Subscripts:

8,W quantities evaluated at body surface and shock wave,
respectively

85V quantities evaluated at vertices of body surface and

of shock wave, respectively

PERTURBATION EQUATION AND ITS BOUNDARY CONDITIONS

Consider a sharp-nosed body of revolution placed in a uniform
stream in the direction of the axis of symmetry (fig. 1). In the
neighborhood of the vertex, the shape of the body differs but slightly
from that of a cone. One may therefore try to find a first-order per-
turbation to the well-known Taylor-Maccoll solution (reference 6), to
be valid near the vertex. 1In view of the conical nature of the initial
solution, it is logical to use spherical coordinates with the polar
axis along the axis of the body. The surface of the body is represented
by 6 = 05(r); the shock wave, by © = 6,(r). The veloclty components

in the r- and 8-directions are denoted by u and v, respectively.

The free-stream velocity is denoted by U, the pressure, by P°, and the
density, by pC. The conditions immedigtely behind the curved shock
are denoted by the subscript w and those on the surface of the body,
by the subscript s. Needless to say, the flow behind the shock wave

is still isoenergetic, though not irrotational. .
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With the introduction of polar coordinates, the equations of
motion are:

pM ¥ _ v 1% (1)
or r o8 r p or

v ,vdu,uw__210p

YR Y: YT pr oo (2)

The equstion of continuity is

2 (pu) +

3 ae (pv) + 2 %? + %; cot 8 =0 (3)
T T :

In addition there is Bernoulll's equation for isoenergetic flow,

27 B _ 2. 4242
7-1p

where c¢ 18 the "limit" velocity, remaining constant throughout the
field of flow, and 7, the ratio of specific heats. Equations (1)

to (L4) govern the four dependent varisbles p, p, u, and v. As is
usually assumed, the solution starts with the Taylor-Maccoll solution
for a cone of semivertex angle equal to the initial angle eso of the

body. One tries to build upon it smell perturbations to take care of
the subsequent curvature. Consider then a perturbation scheme by
writing

u = uy(6) + W(r,6) B
v = vy(8) + ¥(r,6)
> (5)
p = po(6) + p(r,0)
P = po(0) + B(r,6)
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In equations (5) wuy, Vg, P, and Py are the Taylor-Maccoll solu-
tion mention gbove, They satisfy the relations

d
_112 - Vo = 0 (6)
do ’
av dp -
o 1 (o]
(T, ). 1% 7
°(de ué) po 46 (
da
Ea(povo) + 2pgluy + PoVy COt 8 = 0 (8)

The barred quantities are the perturbations. Substituting equation (5)
into equations (1) to (%), one obtains a set of equations involving u,,

Vo, and so forth, together with their perturbations. With the assump-

tion of small perturbations, the quadratic terms of the perturbation
quantities may be neglected and the following equations result:

1 IV ou Wo oy -1 ov Po Op
Ty, By - - A A <[
y o T °Toe Y '°ar p 2 Or (9)

y-1_ %o § o (5 Mo BE>=O (10)
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ou  2u b . 2P o [0 Vo
-+ == - — cot 6
°°<ar+ )+ (ar+r)+°°rae+°©ae+r°° )+
vl P ol
v, op ?(i ° + =2 cot e) =0 (11)
r 98 ¥ T
Opne mgy try to find solutions of the form
T = By(r)uy(6)
v = Bg(r)vl(e)
p = 53(1')331(9)

where B1(r), Bo(r), and B3(r) approach zero with r. This restric-
tion is to ensure that the flow will approach the Taylor-Maccoll flow
near the vertex, for all values of 0. After introducing this form of
solution into equations (9) to (11), in general,

51(r) = ﬂz(r) = ﬁ3(r) =t

where n 1s any positive number, For the Immedlate neighborhood of

the vertex, it suffices to take the lowest value of n satlisfying the
boundery conditions., It then turns out, on assuming both the body and
the shock shapes to have finite initisl curvatures, that the only pos-
sibility to satisfy the boundary conditions is to take n =1 (cf. equa-
tions (23) to (33)); that is,

By(x) = By(r) = Bylx) = = (12)
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so that
T = ruy(6) )
v = rv,(6) ; (13)
p = rpl(e) _;

The requirement on Bl, Bos and B3 for small values of r 18

automatically satisfied, and the solutions thus obtained should be valid
asymptotic solutions for small values of r. Equations (9) to (11) for
the perturbations then reduce to & set of ordinary linear differential
equations:

dul

1 2y - 1 Po
= uguy + Vg - VoVy + —5 P = 0 (1h)
¥4 de V4 p02
du. d a
-1 ~ P v
A S WY R T 0 . I A
4 ae 4 7 pode/ y ©ae

dv _1 Vs 4 d p, Py 4dp
\rl.2u0+l o_r-170 po+p02 o1 02—1- S=0 (15)
v 4o v4 Po de Po de po= Po de

+

dv dpg, 0 dpy
3pot] + Py —— + Vq|— + p, cot + v, —
°"1 ™ Fo 39 I\ao ° ° 39

pl(3uo + %;r—o + vy cot 9) =0 . (16)

These equations may be put into the standard form of first-order
linear differential equations for easier discussion, namely,

dul
e a Fiu; + Fovg + F3pl (17)
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&
a8

dp]
ae

where the F's, G's, and H's

Glﬁ + G2vl + G3pl

(18)

(19)

are all functions of 6, containing the

conical solutions u,, v, and Po. Explicitly, '
=.1l% B
FL=-55
27y -~ 1 .
Fp = 20
2 » S ( )
F3 = - PO
po?vo
Po 1. 2 7-1°80 y-1_2 o
—_— - = + —_— v, -
pg 7 © 7 Po YoVo 22 Yo
G =
1.2 Po
4 Po
Po (Po' \ -1 P! _ _
B%%+cot 9)-vo[2uo+-;‘-vor_ 771 pz Vo~ (27 lié?‘ 1) u(;l
Gz = 1.2 % y (21)
7y © Po
P!
Vo' + vo(—-——- + cot 9) + (27 ks :I')u0
Do Po ‘
G3 = 5 o :
Po 1,2 P
. ' Sy Q- J
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_2, _y-1Pf  y-1%" B
7y 'O 7 Po 72 Vo
Hy =
11,2 _%
Po\7 Po
p' - -
2uo+—vo'-(-p°—+-;—‘cot6)v —(27 1)&7 l)uo
Hy = ° 7 L (22)
1/1_2 Po
_—'v' - o—
Po\7 Po
Do [P -
_PofPo 7 -1% _lvo(vo' + 3uy + Vg cot 9)
- Po \Po Y Vo 7
] 1.2 _Po
y © Po

As for the boundary conditions to be satisfied by the complete flow,
they may be divided into those at the shock wave and that at the body
surface. At the shock wave 6 = 6.(r), the variables u, v, and »p

should be connected to the uniform stream by the well-known shock con-
ditions. At the body surface, the resultant velocity should be tangent
to the body. Consequently, for the perturbations u;, vy, and pj,

the following conditions must hold:

(I""‘l"l""l"l'pl)9_-_9W = (uw = UosVy = Vosby - “"o)9=9W (23)

(L:ﬂ) . (= &) (1)
U, + Tuyg =0 dr

In condition (23), care must be taken to interpret correctly the exact
meaning of the right-hand side. With reference to figure 2, the quan-
titles wuy, ug, and so forth are to be evaluated, strictly speaking, at

point B, which is at an angle 6y to the axis of symmetry and at which
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the shock wave is at an angle $ﬁ with the uniform stream. It is now

assumed that the shock-wave angle has no infinite curvature or higher-
order derivatives and, therefore, 1s expressible as

ae,,
Oy = BWb + T = + o(r) (25)
Also,
r dé de
¥, = 6, + tan~1 LAP I . (26)
dr dr

For small values of r +the shock conditions at B are therefore
obtained by

du,, 40y,

2
W 6=y, + Ty ar 6=64, (27)

Uy

ne
~

6=6W

and similar expressions can be obtained for vy &and p,. The argument

for the determination of wu,, vy, and p, at 6 = 6, Tuns along the

same line. It may be noted that the conical solution 1s no longer
regarded as only valid between the conical shock wave and the initigl
vertex angle of the body, but its validity has been extended analytically
to the entire region with boundaries computed in reference 7.

Thus, from the values at point A lying on the line 6 = QWo and
having the same radius vector r as B, the values of . uy, and so forth.
gt B may be evaluated. There follows,

'uo‘ duo a0,

+ (28)
6=6vwq de ar 6=y,

6=6y uol

and similar expressions can be obtained for v, and Po- Remembering
that in the conical solution at 6 = 8y,

Uy = Yo

jol
£

il

©
(@)
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one may reduce condition (23) to

1 (& d dae
(rul,rvl,rpl) = |r{2 Tw _ ZHo W, o o .
0=06+; dv de / dr 8=6y,

or

(%271:01) g,

o du,, dugy\ doy o dvy,  Avg\ 46y o dpy,
ay ae Jar '\ ay a8 Jar '\ av

dpo) e,
dae dr 6=6yo

Since r 1s assumed to be a small parameter and the exceptional case
of infinite curvature is excluded, the boundary conditions as stated
above may actuelly be satisfied at 6 = 6y, instead of 6 = 6y for

the left-hand side. Hence the final form is

, (2 du,, duo) ae,, , vy, dvo) ao,, (2 dp,,
(ul’vl’pl)ewo "IN av e/ ar ’< ay a6 Jar '\ av

d°°) Py (29)

de dr 9=QWb

Condition (24) at the body surface may likewise be put into a more
explicit form. Assuming now that near the vertex the body shape may be

written ss

g
6s = 05, + T = + Higher-order terms (30)
then
dv,. de dv, dé
o Y o 49g
= (31)

Vo x Vg + I — — r — ——
6=0g 9=9SO de -dr 6=0¢g, dé dr 6=6g,
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= 0. As a result

0=05,
(_11_) - ( S ?io_) s C (32)
u, + rug =6 u, 46 / dr 6=04

By omitting the higher-order terms, the condition at the body
surface finglly reduces to

vl) ( 1 dv0> e
—= ={1- =)= (33)
(“0 0=05, Yo 46 /Ar o g

Regarding the problem now as an initial-value problem, one sees
that from equation (29) the initial values of the variables are propor-

ao.;
tional to —%

since v,

, and the final value of vlluo reached at the
0=y, ,
g
body as given by equation (33) is proportional to — . Tt there-
ar |g=6
Bo
fore may be concluded that, because of the linearity of equations (17)

de ae
to (19), the quantities —= and -—-‘i

ar |o=0g, 8=6y,
tional to each other. Restricted to the neighborhood of the nose, the

first derivative de/dr in fact may be Interpreted as the curvature.
For, from elementary calculus,

are simply propor-

ae ice 2&9)3
—26r+rP-+r(dr e

S

The right-hand side of equation (29) involves derivatives of the
oblique shock conditions and the conical solution. The explicit expres-
sions can be easily obtained. Resolving the velocity behind shock into
tangential and normal components with respect to the shock (fig. 3) it
may be readily verified that, as r —) 0, the following are true:

o |1
]
e

as r —> O.
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— I — o — v-w (3J+)

- Suy (35)

where .dqt/dw and dqnldw may be derived from the standard shock rela-
tions as

EE— = -U sin ¥ (36)
%:Ucosﬂf lj%(-z-—)-_l -p—o-] N (37)
ay y+ 1 py

The variation of density with shock angle is simply

L_d&=(p_w)2 b cot ¥
pC ay ° (y + l)(M.O)2 sinew

(38)

The conical solution is tabulated in detail in reference 7. Maccoll

(reference 8) has expanded the solution near the cone surface 6 = 8g
as

cot 6O N

——=1-(e-9502+——35—°(e-eso)3-

s (o) |(o-es)
3(7 - 1) (uBO)Z b ¥
_ S

cot2930 +

2
0.5833 + =L =17 (220)

o 5
12(y - 1) ¢° (9 - 650)
cot39SO + :us :2 cot 85, ————7;————-+ « o
L t- cg
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where ug, stands for the value of u, at 6 = Gso. The serles forms

for v, and p, may be derived by substituting equation (39) into the
differential equations. Also known is the fact that the conical solu-
tion 18 analytic for a range of 6 larger than the closed Interval
Bw, £ 6 2 65,. This knowledge 1s important because in formulating

boundary conditions (29) and (32) the analyticity of the conical solu-
tion has been used. In other words, in taking the derivatives duO/dG,
and so forth, both the shock wave and the conical body surface are con-
sidered to be absent and the conical solutlion is extended beyond the
range 6y, Ze =>630.

INTEGRATION OF PERTURBATION EQUATIONS

dég doy;
In view of the proportionality of -—-— and ——=
cluded from the formulation of the boundary conditions, equations (1T)
to (19) are to be put into nondimensional form by using the initial
radius of curvature R,, of the shock wave as the characteristic length,

the "limit" velocity c¢ as the characteristic velocity, and the free-
stream density p° as the characteristic density. Iet

con-

g_aRwul'
T ¢

_ ZRyvy
n = c

¢ = Pa
00

Then, equations (17) to (19) may be rewritten as

v fy f3
ﬁ—a—_—?szg"'fgﬂ"'e—_—es—og (40)




16 NACA TN 2505

N = &k + gon + 83t (L1)
gr;-—e By g+h2q+—-—-Le he.§ (k2)
s - 95, %)

The functions f, g, and h are easily identified by comparing
with equations (20) to (22). The results are:

o~

£1 = (6 - 0so)Fy g =G By = 55(0 - Oso)Hy

f5 = Fp ' gy = Gy ==B°-5H2 v (43)
£2 = (0 - 65 )F -2 = (6 - 65)E

3 c( s0)3 €3 =% 53 by ( B0)3

A factor (0 - 6g,) is here multiplied by Fy, F3, Hj, and Hy because
it is recognized from equations (20) and (22) that each of these func-
tions has a pole at 6 = Og,, where v, varies as 6 - 9 The func-

tions f£j, and so forth are made regular for easler discussion.

The boundary conditions now become:

-
E =2 M - d(_uo./c_)

AV V=, - 90 |6=6y,
- a(vw/<) ) a(vo/c) L &t 0 = 6y, (1)

I

t-o2 d(pW/po) ‘ _ dgpolpo)

ay \;r-_-evo ae e=9wo

o/
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g, [ - ugo[c 48 JRg
RWo )
since d(VSO/C)
de -
uSO/C

by equations (6) and (39). Here Rg, 1s the initial radius of curvature

of the body surface. Since the functions f, g, and h are known only
in the form of numerical data such as those presented in reference T,
integration of equations (40) to (42) generally can only be done by
numerical process. With given OSO and M°, one starts from the initial

points represented by equations (%) and integrates stepwise until
6 = 8g, 1s reached. The value of 17 then bears out the ratio of the

radii of curvature by equation (L45).

The appearance of poles at 0 = eso in some of the coefficients

of & and ¢ 1in equations (LO) to (42) indicates that singularities
are to be expected in the solutions., As is well-known from the theory
of differential equations (see, e.g., reference 9) the singularity here
is in fact a "regular" one. If the solutions are assumed to be of the
form

£ = (6 - 05,)"2(6)
1= (8 - 05,)"a6)
£ = (0 055) R(O)

wvhere P, Q, and R are analytic at 6 = 0g,, the exponent « may be
determined from the indicial equation .of. equations (L40) to (k2):

0 -a 0 =0 (46)
th 0 h30 - Q
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in which ¥, f30, hjg, and h30 are the values of the functions £f;,
f3, hy, and hg, respectively, at 6 = 6g,. Hence

It is easy to verify that, based on equation (39),

1 7
Ti10 = 2y
PS
(o]
f30 = >
EpSo Ug,
‘ 2 , } (48)

h =
y J

By substitution of equation (48) into the indicial equation (L46), the
latter becomes

with roots 0, 0, and 1/2. Consequently, the solutions near the singu-
larity are of the form
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- i
£ =t agn(6 - 050)" + y ben(0 - ego)m"2 +
n=0 ’ n=0
log (6 - Gso); cgn(e - eso)n
n:
© Q0 n+.3_
D SPNCRPRILES VAP 3
n=0 n=0
| > (49)
log (6 - eso); (- eso)n+1
£ = iag (e - 65 )n+ ibgn(e - 04 )n+%+
n=0 " © n=0 ©
log (6 - Oso); cgn(e_f eso)n

It may be noted that 1 1s one degree higher in 8 -~ 8, 1n the series

with coefficients bp and cp, because of the nature of equation (41).
This fact is fortunate because the logarithmic infinity at 6 = 8gy, in

the solution of 7 1s thus eliminated, leaving a finite value for the
ratio of the radii of curvature. The logarithmic terms in & and ¢
are more troublesome. Although the actual perturbations are given by
ru; and rp; (or rt and rf), at the point 6 = 85, the perturba-
tions are smgll only if r log, (6 - eso)—-o 0. If the body is concave,
that is, 06 = 950, and is assumed to have a finite initial curvature,
there is obtained

Ty = —}——(6 - 950) + Higher-order terms (50)

s des)
’ dr e=est'3




20 - i NACA TN 2505

Evaluated at the body surface, the combinations ru; and rpy obvi~

ously go to zero. The formulation of the boundary condition (45) is
st111 valid, and one obtains g finite ratio RWO/RBO for each value

of 6g, and free-stream Mach number M°. On the other hand, if the
body 1s convex, the region of flow involves both 6 -~ fgy > 0 and

6 - 950 < 0., The assumption of small perturbation bresks down at the
point 6 = 650 and the procedure adopted above requires further exami-

nation. A discussion of this point will be taken up in the section
"Numerical Results and Discussion." Consider for the moment, then,
only bodies concave near the vertex.

Of all the coefficients in the series solutions (49), only three
may be chosen to f£it the boundary conditions. In order to obtain the
recurrence formulas for the rest, expand first

£ = ;0 £1q(6 - 05"
o]

g = Z 8]_11(9 - eso)n > (51)
n=0
= ) n

b, = ngo By, (6 - Os,) ]

and so on. By substituting into equations (40) to (L42), the following
equgtions are derived:

£10060 + £30%0 = O b
flchl + fllcgo + f30c§l -+ f3lcgo - cgl =0 L
(52)

f..c +fc)-nc + f.c =0
Z+m=n(lz Em ' 3‘7, ¢m En 21]_(n-2)

(n=2, 3 )"':' . .)

St
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8100 * 830°0 ~ o = ©

>

€,.Cp + 8,.Cp_ + c -(n+l)c =0
e 11 Em 37 tm 121821 nm nn

+0=Ti~-

(n=1,2,-3,...)

thCE,O + h30C§O =0

thC§l + hllC§0 + h3ocgl + h3lc;0 - Cgl =0

(hllcﬁm * h3lc§m) - OCtp * Z ho1Cqm = O

l+m=n~2

2

l+m=n

(n=2; 3; )‘l', . . .)A

1
3 -
flobgl + flle.O + f30b§l + f3lb§0 -5 bgl =0

1
z;n (fllbgm + f3lbgm) - (n + -Q-)bgn + £by (n ) = O

(n=2, 3, h‘; « . l)

~

21
> (53)
> (54)
> (55)
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3
8100 + 830Pk0 = 5 Pno = © ]
5 —
acbes * BP0 * 830°1 * B3P0 "B Pt B0 " O |
3
b b - 5)b b =0
z;mn(gll tn €32 Em) (n * 2) no z+;-1 21"
(11=2,*3, )'l'; P .) B
hynab + hanb - ;L- b = 0 1
10Pg0 *+ B3oPto - 5 Pto
0 3 _
hygbgy + Byybeg + hygbey + ByyPpo - 5 Pp1 =0 |
(57)
1
b b - b > . b =0
2 (e ) e B) 0 T et
(n = 2’ 3) 1", e o o )‘J
-Cgg + floago + f30a§o =0
> (58)

Z (fllagm + f3za§m> - DRy, - Cpp * Tolp(p ) = O

1+m=n

(n=1,2,3, .. .)

-

c_ =-(n+ 1l)a o]

g..a, + 8,8, + &,.8 )- =
= ( 11%em 31tm T "21°m nn n(n+1)

(n""'O} 1, 25, 3, - & .) (59)
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hio8to * B3p8¢p ~ C¢o = O

) (h'llagm + h3zagm) - C¢(n+1) *

l+m=n+1 \ (60)

Y hympy - 8g(gegy(n+ 1) =0

1+m=n

(n = 0’ 1, 2) * . - )

~/

In getting nearer to 6 = 6g, the method of numerical integration may

become inconvenient. The series forms are to take over from there on
to indicate the behavior of the various quantities, The first three
coefficients in the expansions (51) are given in asppendix A.

In spite of the fact that logarithmic singularities occur in
both €& and ¢ near the vertex, the omission of quadratic terms of
the perturbations in the derivation of equations (9) to (11) does not
lead to I1nconsistency when the body 1s concave. For, it is clear that
each quadrstic term wlll be one degree higher in r in comparison
with the linear terms. As in the discussion following equations (49),
one may put r proportionsl to 0 - 650 along the body. Then the

same arguments may be used to Justify the omission.

The logarithmic nature of the solution does-lead to other compli-
cations., First, one would suspect that a regular shock curve does not
lead to a regular body shape, and vice versa. It has been show, how-
ever, that the ratlo of the initial curvatures is finite (cf. equa-
tion (45)). Singularities are revealed only when higher derivatives
are investigated (see appendix B). Another complication is associated
with convex bodies. The logarithmic singularity of the solution
appaerently prevente one from applying boundary conditions on the body,
as pointed out above, This difficulty presumebly comes from the
insdequate knowledge of the mathematical nature of the solution and
the improper method of representation. The representation may in fact
be Interpreted as an asymptotic one and is shown to lead to useful
results only in a region bounded by a curve of the - nature of equa-
tion (50). There is reason to suspect, however, that the ratio of
curvature calculated for concave bodies glso holds for the convex case.
Mathematlcally speeking, the asymptotic representation of a function,
as has been adopted in this report, is known to exhibit rather fre-
quently singularities which are absent 1n the function itself. TFor
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extensions of the present results to convex bodies, it 18 only necessary
that the quantity 3%v/dr 36 have & unigue value for 6 = 6g, at the

vertex in the exact solution. For, the value of 0%v/dr 38 evaluated
by following a path along the body surface would be proportional to the
curvature of the body, while the present method of calculation gives a
velid result if the path satisfies the restriction (50), say. If these
are the same, the above calculations hold with only a reversal of the
signs of RWo and Rso, and the ratio would not be changed. Physicelly,

one may also expect that a change of the body curvature one way or
another would produce similar changes at the shock. To be sure, these
arguments are not conclusive, and the gpplication of the results to
convex bodies must be teken with reserve. On the other hand, one should
note that if Bzv/ar 06 does not have a unigue value for r = O,

6 = 65y, the stepwise integration by the method of characteristics will

also require careful exemination. A thorough investigation of the
mathematical nature of the solution is indeed very interesting and very
much desired. o

NUMERTCAL RESULTS AND DISCUSSION

Numerical integrations have been carried out for the perturbation
equations as outlined in the preceding section. Bodies with initial
semivertex angles 6g = 10°, 20°, and 30° are considered with the

free-stream Mach number ranging spproximately from the minimum one for "
attached conical shock wave to a value around 5. It is found that both

£ and { remaln manageasble practically up to the body surface. Since
their values near the body surface are not needed for the determination
of the ratio of the curvatures, the series forms (49) were not used.

The quantity 1n eapproaches a finite value ‘at the body surface and is
easily determined in the stepwise integration, Table 1 gives the coef-
ficient functions ¥, G, and H as well as the values of the varlables
during the integration of the various cases. In the computation, Kopal's
tables (reference 7) have been used as the correct conical solution.

The coefficient functions are computed to four places in most cases and
in appropriate small steps. The final value of 7 at the body surface
is of particular interest. After conversion to the ratio of the initial
radii of curvature according to equation (45), the results are listed

in table 2 and plotted as figure 4

Variation of curvature ratio RWb/Rso with Mach number M for
given values of 6Og,.- It is seen that, for given values of 68g,, as

the Mach number decreases from a fairly high value the ratio RWo/Rso
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tends to increase until a maximum is reached. Further decrease of the
Mach number causes the ratio to come down rapidly, and at least in one
case (950 =20°, M= 1.216) the computation actually gives a negative

value at a quite low Mach number. With smaller values of 6g,, the ratio

exhibits a more violent change with Mach number in comparison with the
cases of larger values of 6gg, though qualitatively the tendency is simi-

lar. As is well-known, the conical flow near the nose may be completely
subsonic, completely supersonic, or a mixture of the two. The Mach num-
bers determining the different regimes for the present 6g's are taken
down from reference T and marked in figure 4 for comparison. At first
one might surmise that perhaps the ratio of RWo/RSo reaches its maximum

at the end of the supersonic regime, comes down in the mixed regime, and
goes into negative values when flow becomes completely subsonic. This
turns out not to be the case.

Zero point of ratio RWo/Rso" The zero point of the ratio RWb/RSo

lies very close to, though is not exactly coincident with, the critical
Mach number below which a completely subsonic flow prevails. On the other
hand, it does not seem justifiable to conclude too much in this respect.
The vanishing of Rwo/Rso means an infinite curvature of the shock wave,

which may be recalled to be contradictory to the assumption in deriving
the boundary conditions (cf. equation (25)). Consequently, the effects

of higher-order terms will enter in deciding the radius of curvature.
Indeed, a similar phenomenon has been found in the two-dimensional case
and investigated to some extent by various authors. Crocco (reference 1)
was the first to notice the appearance of a theoretical negative curvature
ratio in two-dimensional shocks. He conjectured that detachment might
start at this stage because of the unlikely physical plcture. Guderley
(reference 10) studied the behavior of flows qualitatively by examining
the hodograph plane. For a straight wedge with a shoulder, he claimed
that the shock would start with infinite, but not negative, curvature when
the wedge angle lies beyond the Crocco point. The solution for a curved
wedge was assumed to be similar in nature to that of the straight wedge
with a shoulder. Recent works by Thomas {references 11 and 12) further
indicate that as soon as a subsonic regime begins to appear behind the
shock, the shock must exhibit a singular behavior, even though the body

is of regular shape. The axially symmetrlical case is even more complicated.
As a matter of fact, the asgumption of a regular shock-wave shape near the
vertex is likely to be untrue for all Mach numbers, according to an inves-
tigation presented in appendix B. The present results in the subsonic
range must therefore be interpreted with reserve. The zero point is seen
to occur only when the flow behind the initial shock is entirely subsonic.

Comparison with two-dimensional case.- A comparison of the results
in the supersonic regime with the corresponding ones in two-dimensional
flow over a wedge may next be made. Thomas' results (reference 3) are
converted into the notations adopted in this report and plotted as fig-
ure 5. The general tendency 1s seen to be similar. For larger Mach
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numbers the difference in the ratio of curvatures in the two cases
becomes small. As the lowest Mach number for attached straight shock
is higher in the two-dimensional case, deviation is large for the
lower Mach numbers. The variation of the ratio of curvatures is also
much less violent than in the axially symmetrical case. For instance,
for Gso = 10°, the ratio of curvatures reaches a maximum of 4,5 in

the two-dimensional case but goes beyond 40 in the axially symmetrical
one,. ) :

Experimental data have not been available to the authors for
checking the theory. The gregtest interest, besides checking the.
theory for its applicaebility to concave bodies, is, of course, the
extension of the results to convex bodies, The behavior in the sub-
sonic regime requires more theoretlcal study as well as a thorough
experimental investigation, for which the technique is admittedly much
more difficult as the delicate nature of transonic flow enters the
picture. It is hoped that a comparison with experimental data may
soon be made to evaluate the usefulness of the report.

On the report itself, the theoretical difficulty of the singular
point at 08 = 930 and the exact nature of the higher-order perturba-
tions deserve further examinstion., If the first-order perturbation,
as presented here, is found to agree well with experiments, more com-
putation is needed for a conclusive knowledge of the variation of
Rwo/Rso' The curve for 6g, = 10° in figure 4 can only be regarded

as tentative because of the small number of computed points and the
violent variation. At least one or two intermediate values of 950

between 10° and 20° should be computed so that interpolation may become
possible for practical purposes. The limiting case for M.—3 « is
also of sufficient interest to be included in any subsequent computation.

Massachussetts Institute of Technology
Cambridge, Mass., June 21, 19L49
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APPENDIX A

COEFFICIENTS IN EXPANSION (51)

27

The first three coefficients in expansion (51) are as follows:

= X
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APPENDIX B

FURTHER DISCUSSION OF PERTURBATION SCHEME

AND SINGULARITY AT NOSE

If a better approximation is desired, it is necessary to look into
the nature of the perturbations more closely. Still using the polar
coordinates, assume now that each hydrodynamic quentity is representable
in a series expansion as follows:

'u'/c=Zrnun(e) S (B1)
n=0 : )

v/e =)  rov(6) (B2)
- n=0

P =) _sul0) (83)

while equation (4) serves as the relation among p, p, u, and V.
The conical solution and the perturbation (13) may be interpreted to be
the first two terms of the gbove series. One then may calculate:

gf = Z P (B4)
n= ) .

¥ 1; Pgp™™ (BS5)

b’

(B6)

© DR
It
=]
‘ ge
B
H
B
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where

Prp = - 1_;_1_ {f;;n [pk anj (uz“m+1 * vz"m+1) *

k+ 1 n+ 1
5 Pk+l Z (ulum * vlvmi‘ - ~2%  Pn1 (87)

1+m=]

Do = - 7 ; x ‘{fz;n Ek z}m;,j (uzum' + Vz"m’) +
A S (s vzvm):l - 5’;—} (28)

1+m=]

> (29)
Y pp =0 (n #0)

1+m=n

the primed quantities being the derivatives with respect to 6., It
can be shown that the expression for p_; in equation (B9) is, in

general, of the form

Py = ZZn;:k Tx1 (po)plpm (B10)

with fi;(p,) & function of p, only. After substitution into the
fundamental equations (1) to (3), there follows by equating the




NACA TN 2505 33

coefficients of the kth power of r a set of equations for the
(k + 1)th-order perturbations:

Z E11Um+1(m + 1) + Prmp_z:l + E vy (um' - vm) =0 (B11)
l+m=k 1+m=k+1
Z WV (m + 1) + Z EZ (um + vm') + pemp_z__l =0 (B12)
l+m=k 1+m=k+1
E E:va' + Pyt + (n + z)plum + pyv, cot 9] =0 (B13)
l+m=k

In more explicit form, equations (Bll) to (B1l3) may be rewritten as

ky + 1 2y - 1
Volgey' + 5 UoWer] =

b
VoVkey + (K + 1) — pygyy =
, Po

Qlk(uo)vo’po’ o . -:uk:vk:pk) (B1Y4)

T
7y -1 1 y -1 Po 1
5 oWy + (; Vo = TS % o )uk+l ty VoVie1' F

1
1 y -1 Po Do
R A ";J"k“”pz"k*l'"
o

Do Po' '
o250 Pl = %u(PoTorPor - - s iRy (B13)
o
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4

v, Vo!
(k + 3wy + vip1' + (29" + 0t B)Vigyy + =2 Py [ ==+ 2 (k+3) +
Po Po Po Po

N

v
5—3 cot e:]pk+l = Q3k(uo,vo,po, o o .,uk,vk,pk) (B16)

vhere Qpy, Qp, and Q3k contain the lower-order functions. The

Q functions turn out to be zero only for the zeroth- (the conical) and
the first-order functions. However, in the general dilscussion of the
kth-order solution, it is only necessary to pick out the terms with
strongest singularity.

Again, equations (Bll4) to (B16) may be put into standard form in
parallel with the previous study. Thus,

Uer1' = Fraaeen + FuoViel + FisPrel + Op,k (B17)

Vil = Gea%ie1 * GreoVirl * Gx3Pre1 t Ag,k (B18)
1 -

Prerr’ = Bea™en ¥ BeoViee1 * BesPren Sk (B19)

where the A's represent combinations of lower-order functions, and
the coefficients F, G, and H are given in the following expressions:

ky + 1 Yo
Fkl=—-_____
7 Vo
2y - 1
P
Fk3=-k+l-%
Yo p, J




(k + 3)22 - l:%f"oe—z—'—liuovw (ky + 1)(7 - 1) “ogl

pO 4 pO 72
Gy =
ly2_%
7 ° P
Po(Po’ ) 1., _72-1F (27 - 1)(y - 1)
Gm:‘?o(Po+°°t9 Volk + 2)vo + 5 Vo' - S5 5= Vo - 2
1,2 _ Po
Y ° Py
p‘t
P T"c:""‘ro(b—o-—+ cot 9)+(2+3-§_l)u0
o 0
O3 = —3
Po ‘J—'VE-BO-
7y © Po
, _(k+2) -7z 1P O+(k7+1)_(7_1)u02
7 7 Py v Vo
Hyy = Po J_.VE_PO
7 ° T p,
1
(k+2)uo+%vo' (2L+17ncot a)v -(27'127-1)110 -
Hygp = Pg 2
L,2_%
7 Po
Po{Po’ (k+ 1)(y - 1) ug 1
Ekg-f%& " A MR R CRA
Ly2_Po '
770 T B,

r (B22)

GOGe KI YOWNM

43
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The point 6 = 65, 1s seen to remain a pole for the coefficients P
st, Hyq, and Hk3 as in the first-order perturbation. Proceeding

elong a similar line, one writes down the indicial equation for the
index o as

fi1,0 - % 0 fx3,0
0 -y 0 =0 (B23)
L) ‘ 0 by3 0 - ax

where f},, and so forth are the values of the regularized functions
(e ~ B50)Fyy, and so forth (cf. equation (46)) at 6 = 6g,. Hence,

-ag|e® - en(fi1,0 + Bi3,0) * Fit, 73,0 - Tz, ou1,0] = O (E2M)

It is found by using equation (39) that

j
~kyr+1
Tx1,0 5y
£i3.0 = k+1 Pso
k3,0 = ~ 5
P
) soauso . X (B25)
_ (kr + 1)(7 - 1) Peo "so
B1,0 = > >
2y 8q
h e+ 1)(y - 1)
k3,0 o g

The roots of the indicial equation (B24) then are given as

2k + 1 k
=0 0 - ——
e ’ ) ) oy
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The last root is positive as long as 7 >

k , & condition which is
2k + 1

satisfied by any real gas. Thus the complementary function of 4if-
ferential equations (B17) to (B19) near 6 = eso may be put down in

series form

10ge‘(e - 65,) S Cu,n(® - Os,)" (B26)

and so on., As in the first-order-perturbation case, the solution for
Vk+1 1s again one degree higher in (9 - 650) in the b and c¢ series,
In the complementary function, therefore, even for the higher-order
functions, nothing worse than a logarithmic term occurs., On the other
hend, the particular integrals associated with equations (B1l7) to (B19)
due to the presence of the lower-order functions in the @ functions of
equations (Bl4) to (B16) have stronger singularities at 6 = eso,

because each lower-order function contains at least a logarithmic term,
To see this, let equations (B17) to (B19) be transformed into the
equivalent third-order equation for any of its variables, say uy;q

(or pk+l) as 1t has been shown to behave worse near the singularity

than vy,q. Let Nk(uo,vo,po, P .,uk,vk,pk) be the resultant non-

homogeneous term, arising out of the Q functions through the trans-
formation process. Then if Ugy1,1s  Uktl,2 and Ugy1,3 &re the

complementary functions represented by the three series in equation (B26),
the general solution is obtainable by a variation of constant method.
Assuming the solution to be

Vi, 1%+1,17 Vi, 2%+1,27 Vi, 3%+1,3
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one finds
o W 0o 3) 1 b
k,1 =
W(uk+1,1’uk+1,2’uk+l,3)
v _ W(uk+l,3’uk+l,l) N 4o
k,2
? W(@k+l,l’uk+l,2’uk&l,3)
Vo o= W(uk+l,1’uk+l,2) T a6
k,3 W( u u
Y1, 10 e 1,27 %41, 3

NACA TN 2505
~
> (B27)
J

where W stands for the Wronskian., To study the behavior near the

singularity, only the dominant terms are of importance.
tion (B26) it is seen that near the singularity

From equa-

Uk ~
uk_,_l’lm Constant, Uk+l,2 ~ (6 - Gso) 3 uk+1,3,“' log (9 - 650)

Hence,
1 (e - 'eso)“k log (6 - O, )
W (uk+l,l’uk+1,2’uk+l,3) ~ |1 (94 ',ef’o)&k-l 6 -165
' (o]
- Q-2 _1
1 (9 Gfo) (9 _ 950)2
= (6 - o)

I-I(uk+l’1,uk+l,2) ~s (e - eso)onk—l

W(oger1, 2041,3) = (0 - 0, Y 10 (o - 6s,)

W(”k+1,3"’k+1,1) & (9 - 980)-1
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After substitution of these dominant terms in equation (B27), there
follows

R
Vi, 11,1 ® f(e - 05, ) Loge (0 -'eéo)N ae
Vie, o%e1,2 ® (9 - eso)“kf(e - eso)g—akN aw (B28)
Vi, 30e1,3 ® 108, (6 - 65,) f(e - 65, ) a6

>

It remains next to find out the singular behaviour of N in the
neighborhood of 6 - fg,- In the process to reduce to the standard form
equations (Bl7) to (B19), the elimination of Vk+1' Or pp,y" from

equations (B15) and (B16) involves a multiplication by v,. Consequently,

\ . h
op,x = kv

A, ® S T Vol } (B29)
L, ¥ i * Vol )

As vy 1s known to vary as (6 - GSC) near the singularity, unless Qox

or Q3k contains terms of higher-order singularity than Qlk/<9 - 650>2

the main contribution to the singularity of N will be @Qjx. A closer

examination reveals that the Q functions in equations (Blh) to (B16) are
all combinations of products of the lower-order functions. With the knowl-
edge that the v function is, in general, one degree higher in (é -~ 650)

e e e A e —————— e rar s T = e = T et e - M= — M= r
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than the corresponding u or p function, the leading terms of the
Q@ functions must be included in the following expressions:

For Qlk,
A
Elzum(m + 1) + Prpp_ z:l
l+m=k
For Qpy., '
D Pogf.

I+m=k+1 Om™-1

For Q3k’

Z P7Ym

1+m=k

At once QBk may be discarded, for it is at most of the same order
as Qpy. To compare Qi) and Qpy, formulas (BT) and (B8) for Prm
and Pon &Y€ needed. Meanwhile, let it be assumed that the higher-

order functions have stronger or equally strong singularities than
their corresponding lower ones, Then the leading terms must be
included in

For Qlk’
Z P_1 Z pp+1§:u,juq—

l+m=k p+g=m
For Q'2k’

PPN SRS L

ptg=m ~ J=0

As the highest terms containing the (k+1)th-order functions are taken
out in these expressions, the two summations containing pp Dbecome

identical and the difference lies in the terms uj'uq-j and ugug_g-

No more conclusions can be drawn without further knowledge as to the
nature of the solutions Up.
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k1

To f£ix ideas, consider the second-order equations, the Q@ <functions
of which contain the zeroth and first-order functions whose forms are
known. The @ functions are as follows:

Qo =

Q32 =

Vith u; and

Po

Po P1
P [P P’
1{ o 1 ( )
== - —J{u + V9V5) + wquyt + vVt o+
N (po Py > 1% * V1 1%1 171

—plvl' - pl'vl - )-I-plul - plvlcot e

lcuiuo + vlvo) +

f

y

(B30)

p1 Vvarying as log (6 - 650) near the singularity,

Qo = 16g2(e - 8s,)

R

Q32 ~ 1082(9 - eso)

-

Thus ng evidently has a stronger singularity near 6 = 9

(6 - 9 Q22 .In this case Aps (cf.” equation (B29)) contributes ’
most to the function N.

%p (elTo) 108 (0 - 92o) >

(B31)

than
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At any rate, proceeding on the discussion of the particular solu-
tion, one observes that in twice differentiating equations (B17) to (B19)
to arrive at a third-order equation for one dependent variable, the non-
homogeneous term N necessarily will contain second derilvatives of the
A functions. The algebraic operations involving the regularized func-
tions f, g, and h during the process do not affect the nature of the
singularity. If the second derivative A" is computed from the leading
term in the A functions, it is permissible to replace N by A" in
equations (B28) for order-of-magnitude study. Again, consider the
second-order functions: The lesding term of the A functlons is

Q0 1.
T " T log?(6 - 65,)

Hence,

A" 2 m log?(6 - 05,)

By substitution into equation (B28),

10g3{6 - @ )
Vl,lue,l %f Oge(— esOSO) ae
RS 1ogl"(9 - 650)
log2(6 - 0g )
Vi,2%,2 = (9 - eso)ak (9 0 )ak:1 @ > (B32)
- Ogg
% 10g2(0 - 0s,)
V1,3u2,3 ~ log (9 - Gso) logz (f ;Seso) ae
~ logh(e - 950)
N -

Thus the second-order functlon contains terms of the order 1ogh(6 - 65 ),
o
whereas the first-order one contains only log (9 - 930).
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In view of thils evidence, one is led to mske the assumptions that
the leading term in the singularity for the kth-order function takes the
form of powers of log (6 - 65, ), -that is,

ux ~ Eog (9 - Gscilsk

and that 8 > s, ;. Consider the combination ugug_y 1o Qe

Ugtg_g % Ewg (0 - 0323

1
while the combination uy'ug g in sz becomes‘

E_og (6 - Gso)] 5j+8q-3-1 '
uyugg ® 6= 05,

Therefore Qjx has a sing;ulé.rity much stronger than (9 - Gso)aqzk,
and the contribution to the leading term of N 1is only by Q]_k To

ascertain what choice of the index Jj will give a maximum value of
8 3 + Sq- 3 requires, however, more than the monotonic increasing property

assumed. For instance, if the second difference of the sequence sy 1is
assumed to be of the same sign throughout, a positive one requires J =0
and a negative one requires J to be approximately q_/2 for s jt 8g-3

to attain a maximum, If the former is true for the present case, the

. . , . . . s

= - q
highest combination of . u 3%~ would be Uguy E.og (6 680)] .
With a similar argument, the leading term of Qj3 1is then

Ux ¥ P1%

‘Eog.(e - .BSOZIékfl "

.

- B




Ly

Hence,

A"

By substitution into

Vi, 1%ee1,1 =

Vi, oUks1,2 ®

Vk,3%+1,3 ®

&
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1

equation (B28)

f [0 (o - 0ac)] ™

o - 6,

Eog (9 _ eso):l s+3
log (6 - 6g, ot
( eso) f [ - )] de

ae

5 )Cl.k+l 9

s +1
E.og 6 - Gso) k

. E_og 86 -6 ]Sk*'l
log (e - eso) ( so) e

6 - 86
EOg (e B eso)] Sy+3

=0)

7

(B33)

If the solutions in equations (B33) hold true, the second difference

of sy, 1is nil as the sequence
The combination of uyug_
so the result (B33) has no contradiction.

Sy 1s now increasing linearly with k.
j then becomes indifferent to choice of J,
The derivation is thus
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Justified a posteriori., Formulas (B32) are seen to be given by equa-~
tions (B33) with k =1, s = 1. One concludes by mathematical induc.

tion that for the (k+l)th-order function, its singularity has the
leading term O {E.og (9 - 980)] 1+3k.}‘

The nature of the differential equations for the kth-order per-
turbations as assumed by equations (Bl) to (B3) having been clarified,
it remains next to investigate the proper boundary conditions snd the
results thereby arrived at. Generalizing equations (23) end (24) one
has

(}f;'rn 5 }fi rnvn}‘zfi rnpn>6
n=

(uw - Ugs Vy - Vos Py - po)

=T =i =6, 6=0y
(B3k)
riv ) o
, a s)
—_— =\ = (B35)
' ( dr Jo=p
™n fo-g_

Since the differential equations must be numerically integrated from
the initial point, let equation (B34) be examined first, Expanding
into a power series of r near r = 0, o

a
A M % 9=9wo<w ) 9w°) ! E%eﬁe‘, ("’ ) 6"0)2 et
.
E N T o C (m36)

n! d\lfn e=ew0
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Assume now that the shock-wave shape is regular and also representable
in power series in r. Then ,

. ae
Y- By = Oy - Oy + tanfl( —1)

dr
2 a5 (S
= _— + T
p=1 B¢ ar? g0 o+ 1 ar
= 2:; Yt
n=
where
\l"o =0 7
( 1)%(‘19‘* )n 1 F
_ (- o] 1 o]
o=\ * 35 - for odd n (B37)
dafg
\lfn=—l‘——w9 for even n >0
n! grf J

with dDGWb/drn representing the nth derivative of 6, evaluated
at By . After substitution equation (B36) becomes

1 o
w= > 4 Z Vo¥m, . . . Yo TS
n=0 -- ayn =5 ml+m2; +mn=k my ¥ My my

Wifh dnuwo/drn likewise representing the nth derivative of u,
evaluated at Gwo. Regrouping the terms, one gets the expansion of uy
in ascending powers of r,
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= ; e (538)

where

1 dano

~ o =k oog B ayn
ml+m2+. . .+mn—k n=0 b

b e = YmVmp - - - Vm,  (B39)

In a similar way u, at 6 =6

- is obtained:

(2] .

u, i ;__6 TR (BY0)

where
(o2}
1 dBug
Ho,k = = —22 9 0 .o . Oy (Bl1)
’® motmot...4m =k n=0 O de® 172
g . o oIy L D= .
end, in turn,
(BL42)
8y = = —2
m g

with dnuo’o/ dé? representing the nth derivative of u, evaluated
at By, . With the help of expansions (B38) and (B41) for u and

gimilar ones for v and p, the coefficient of r® in two sides of
equation (B3L4) may be equated. The proper initial point at the shock
wave 1s then readily derived;

U,V -
( K’ k’pk)e=9w

) (“W:k " Ho, M,k T Vo, %k T ‘Do,k) (BU3)
(o] .

e =9wo
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In equation (B43) the v's and w's are the coefficients for v

and p, respectively, corresponding to the up's for u defined by
equations (B39) and (B41). They are defined in exactly the same manner
except that u 1is to be replaced by the variable in question.

With the initial point specified by equation (B43), the differ-
ential equations may be integrated numerically and the three arbitrary
constants in the series form nmear the singular point 6 = eso determined.

Consider now the quantities when the body is reached. The left-hand side
of equation (B35) may be rewritten as

)™
0 ______n;O = Z X,(0)rl (B4k)
n=
Dy
n=0
by defining
Xg= ) viug - (B15)
l+m=n
and
1
u_o = %
(BL46)

Z wu_; =0 for n#0

1+m=n

Each term in X, therefore contains, in general, quantities of the

form (6 - Gso)Eoge (9' - 650):‘1{ near 6 - 0s,- The importent con-

clusion now presents itself: If the shock-wave shape is assumed to be
regular, the body shape must have a singular point at the vertex. An
expansion of the body shape in power series of r in that neighborhoocd
is not possible. The previous method cannot be.used to obtain the
higher-order derivatives of 6g = 84(r).
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The approximate behavior of the singular body shape near the

Lo

vertex to produce the assumed regular shock may be seen by the following
consideration. Writing out the first three terms of equation (B4Y), one

has

Yo

U\ Yo Uy

Vo R 0(6 - GSO)

dég Vo V] Vguy s[V2 Vi
r — = — + rgl— - + rfl— - — -
dr 6=65 Yo U 2 u, 2

Yo

As previously shown,

uo ~ 0(1)

OKe - 05,) 10ge (6 - eso):] + 0(1)
o pose (¢ - )
vp % 0 Ks - 0g) ioge‘*(e - esoﬂ + 0(1)
up % 0 Eozel‘(e - eso)]

Equation (BU4T7) thus becomes

5
2

5
2

(B4T7)

( gre_s>e=es ~ 0(9 - eso) + rg<0(1) + OKQ - 950) log, (9 - eso)]} +

1'32 J'Lo(l) + 0[(9 - 930) log, (9 - eso)] +

oKa - Gso)logee(e - ésoﬂ + 6';@ - 950) logel*(e - 930_)] ...
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or

(r gﬁ)e&es x o(e - 950) + Ty o[(e - eso) loge (9 - esoil + 0(1)’ +
rBE o[(e - eso) 10861#(9 - eso)] + 0(1)}+ . . . (BUS)

de
The derivative d_rE having been shown to be a finite quantity

6=06 5o

at the surface, one may assume

dae
6 - 65 ~—2 rg + Higher-order terms (B49)
© " ar o=,
)
Hence,
a6
T —— ~ rSE(l) + O(rs loge rs)] +
6=04
2 4
Trq E(rslogers)+. . .:l+. . e
ae ,
r — ~ rg0(1) + O(rs2 loge rs) + O(rs3 logeurs) + ... . (B50)
dr lo=65

Equation (B50) indicates that the body surface as defined by 6g = 5(r)

must have logarithmic singularities near the vertex. Expression (B49) is
also found to lead to no inconsistency.

Conversely, in the usual case when a regular body is given, the
shock wave cannot be represented regularly without contradiction. It
must have a singularity at the vertex. The nature of the singularity
presumably would likewise be logarithmic.
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The existence of a finite first derivative des/ar as obtained
in the section "Integration of Perturbation Equations" is fortunate.
By regarding the perturbation as the asymptotic solution which is
correct when r —>» O, the ratio of the initial radii of curvature may
be found in spite of the singularities when higher order is considered.
It may be pointed out that the "smallness" of r should be measured
by a proper scale, which, in this case, 1s obviously either Rwo

or RBo neither of which, by hypothesis, should be zero. In fact, one

may recall that in the above-mentioned section when the first-order
perturbation equations are reduced to dimensionless form, the expansion
becomes:

u,
— +

ols
!

and similar expressions can be obtained for v and p. The appearance
of the parameter r[Rwo verifies the choice of scale stated gbove.
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TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H ARD
VARIABIES £, n, ARD ¢
(dgg) f1 F3 61 G2 G3 B By Hy : 1 ¢
6a, = 10°% ug,/c = 0.40; MO = 1.0901

68.653 | 0.2853 | 0,2861 | -68.2270 | -3.82165 | -3.7282 | -167.25 -9.6312( -9.484 | ~0,021 ] 0.659 | 1.660
68 2957 . -44, 06hk | -7.T2%2 | -2.k67T7 | -10h.452 | -19.T70 | -6.219 | -.037| .75L] 1.896
67 23215 | .2905 | -29,7930 | ~7.6336 | -1.7233 | -70.49k0 | -19.438 | -h.275| -.066| .906| 2.293
66 2327 | .2932 | ~22.9179 | -7.0077 | ~1.36585 | -53.1359 | -17.906 | -3.333| -.100 }1.061| 2.639
65 .3435 | .2960 | -18.T736 | -6.4205 | -1.1503 | -b42.6458 | -16.454 | -2.759 | -.1k%0 | 1.224| 3.083
6k .3598 | .2988 | -15.9686 | -5.9278 | -1.0046 | -35.529% | -15.228 | -2.365 | -. 1.365 | 3.475
63 .3764 | .3019 | ~13.9308 | -5.5186 | -.898L | -30.3492 | -14.209 | -2.07k | -.235 |1.515| 3.866
62 .3933 | .3051|-12.3772 | -5.175% | -.8173 | -26.3885|-13.352 | -1.848 | -.291 {1.66%| L.257
61 L4105 | .3085 | -11.1506 | -%.88%0 -.7528 | -23.2526 | -12.623 | -1.666 | -.352|1.812| L.6k8
60 L2821 | .3119 | -10.1561 | -%.6336 ~-.700k | -20., -11.993 | -1.51k | -.418|1.958 | S.o0k0
59 1] .3157( -9. 58 | -.6565 | -18.5809 | -11.M45 | -1.385| -.489 |2.103] 5.432
58 Lughs | L3196 | -B.6397 | -h.22kh | -.6193 | -16.7912 [ -10.962 | ~1.27k | -.565 |2.247| 5.825
57 .4833 | .3237| -8.0481[-k.0550 | -.5873| -15.2550 |-10.531 | -L.175 ) -. 2,390 6.219
56 .5026 | .3280| -7.5374] -~3.9040 | -.5595 | -13.9248 | -10.146 | -1.087| -.732 {2.531| 6.61%
55 5285 332k | -7.0922|-3.7686 | -. -12.7579 | -9.7979 | -1.007 | -.823 |2.671| 7.010
54 5428 | .3372| -6.7007 ) -3.6463 | -.5132| -11.7262 | -9.4802) -.935| -.919 |2.809 | T7.ko7
53 .5638 | .3h422| -6.3542]-3.5357 | -.4937| -10.8071| -9.190%| - -1.019 | 2.946 | 17.805
52 5854 | .3hTh | -6.0453 | -3.435% - b762 -9.982% | .8.9258] -.807|-1.124 |3.081| 8.20%
51 L6077 | .3530| -5.7685|-3.3440 | -.h603 | -9.2371| -8.6801| -.749 |-1.23%|3.214| 8.604
50 .6308 | .3589 | -5.5192|-3.2606 | -.u58 | -B.5611( -8.4535| -.695|-1.348 |3.346| 9.008
fite} L6546 | L3650 | -5.2937(-3.1843 | -.k325{ -7.9435 | -8.245| -.643 |-1.%67 |3.476 | 9.k07
18 6793 | .316| -5. ~3.2147 -.beok | -7.37621 -8.0448| -.59% |-1.591 |3.60k| 9.810
g .0k | .3785 | -k.9023 | -3.0511 | -.ko92 | -6.8852 | -7.8607| -.547 |-1.719 |3.729 |10.213
ks L7315 | .3858 | -k.7316| -2.9929 -.3988 -6.3711 | -7.6881| -.502]-1.851 |3.852|10.617
s 7592 | .3935 | -h.5T51(-2.9399 | -.3892 | -5.9212 | -7.5249( -.458 |-1.988 [3.973 [11.021
11 L1881 | .hoa7 | -k M313 | -2.8917 -.3803 -5.5022 | -7.371k| ~.%16 |-2.129 | h.092 [ 11.%26
43 .8182 | .ok | -4.2987 | -2.8482 | -.3719 5,209k | -7.225% ] -.374 |-2.274 | 4.209 | 11.831
4o 87| Jhig6 | -h.1763 | -2.8089 -.36l b 7ho2 | -7.0875| -.33% |-2.%23 | k.323 | 12.236
by 88281 . -k,0630 | -2.7739 -. -b.3914 | -6.9558| -~.294 {-2.576 | 4.435 | 12.642
Lo 9175 | L4399 | -3.9581 | -2.7h29 | -.3500 | -k.0611 | -6.8299| -.255 |-2.733 | %.545 | 13.048
39 9580 | 4511 -3.8606 | -2.7159 -.3436 ~3.7T4TL | -6.709%| -.216 |-2.893 | %.652 | 13.454
38 .9925 | k632 | -3.T700 | -2.6928 -.3375 -3.4473 | -6.5935| -.277 |-3.057 | k. 757 | 13.860
37 1.0333 | .4760| -3.6857|-2.6736 | -.3318{ -3.1599 | -6.4819{ -. -3.225 | 4.860 | 1k.266
36 1.0765 | 4898 | -3.6071 | -2.6575 -.3265 | -2.8838 | -6.37Th5| -. -3.396 [ k.961 | 1h.672
35 1.122k | 5046 | -3.5337|-2.6468 | -.321k | -2.6167| -6.2695]| -. -3.571 | 5.060 | 15.078
3k 1.17T14 | .5206 | -3.4653 | -2.6395 | -.3166 | -2.3577| -6.1675| -.019 |-3.7% |5.157 | 15.48%
33 1.2238 | .5380 | -3.h01%4 | -2.6363 -. -2,1052 | -6.0678 .022 {-3.931 |5.253 | 15.890
32 1.2801 | .5569 | -3.3h7|-2.63T% | -.3078 -1.8581 | -5.9700 .06k | -%.116 |5.347 | 16.296
31 1.3%08 | .577h| -3.2859 | -2.6430 -.3037 -1.6145 | -5.8729 .107 | -%.30% |5.440 | 16.701
30 1.4065 | .5998 -3.2337 -2,6532 | -. -1.373% | -5.7767 .152 | -h. k95 |5.532 | 17.106
29 14780 | 6244 | -3.1849 | -2.6685 -.2962 -1.1332 | -5.6805 .199 | -k.690 |5.624 | 17.510
28 1.5561 | .6518 | -3.1393 | -2.689% | -. - -5.5830 .248 [-4.888 |5.716 | 17.91h
27 1. .6820 | -3.0966 | -2,7157 -.2895 -.6h88 | -5.48k2 .300 {-5.089 |5.808 |18.317
26 1.7370 | .7157 | ~-3.0568 | -2.7487 -. -.ho11 | ~5.3833 .355 [-5.293 [5.901 | 18.719
25 1.8430 | .1535 | -3.0196 | -2.7887 | -.283% ~.1460 | -5.2790 .15 |-5.501 |5.996 |19.120
24 1,9621 | .796k | -2.98k9 | -2.8364 | -.2806 L1187 | -5.170k 479 [-8.712 [ 6.09k | 19.519
23 2,0972 | .8455 | -2.9527 | ~2.8927 | -.2780 .3968 | ~5.055%| .sk9 |-5.927 |6.196 | 19.917
22 2,2521 | 9022 | -2.9227|-2.9588 | -.2754 .6928 | -4.9328 .628 |-6.145 16.303 | 20.313
21 2,4322 | 9684 | -2.8948 | -3.0360 -.2730 1.0136 | -k.8007 .TAT |-6.367 | 6.6 | 20.706
20 2,646 |1.0472 | -2.8693 | ~3.1257 ~.2708 1.3655 | -k.6555 .820 |-6.593 {6,537 | 21.095
19 2.8998 |1.1k22 | -2.8457 ) -3.230% | -.2686 1.7619 | -k. 4951 .9%0 |-6.824 |6.660 [21.479
18 3.2135 [1.2598 | ~2.82k0 | -3.3523 | -.2666 2.,2196 | -k.3146| 1.083 |-7.059 (6.81k | 21.856
17 3,6101 |1.4091 | -2.804% | -3.k9k7 | -.2648 2.7652 | ~4,1085| 1.261 [-7.300 [6.975 | 22.225
16 4,130% |1.6060 | -2.7867 | -3.6617 | -.2631 3.4423 | -3.8690] 1.491 (-7.54T (7.157 |22.582
15 k. 847k |1.8781 | ~-2.7720 | -3.8588 | -.2616 k.3299 | -3.5870 | 1.801 [-7.B00 |7.365 |22.922
1 5.9071 |2.2819 | -2.737Th | -k.0955 | -.2602 5.5845 | -3.2489 | 2.25k |-8.061 |7.607 |23.239
13 7.6499,] 2.9481 | -2,7h61 | -L4. 37 -. 7.5661 | -2.8319 | 2.983 [-8.331 {7.891 |23.524
12 11,0961 |4.2683 | -2.7371 | -4.T159 -.2580 | 11.3486 | -2.3105 | L4.%08 |-8.612 [8.231 |23.76k
11 21,3433 [8.1999 | -2,7312 | -5.1383 .| -.257h | 22.3217 | -1.6397| 8.597 |-8.907 |8.645 | 23,934
10 o ® -2, -5.6T13 | -.25T1 P —— _— - e 9,156 | - —-
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TABLE 1.~ COEFFICIENT FUNCTIONS P, G, ARND H AND

VARTABLES &, 1, ARD { - Continued

(dgg) b F3 Gy G2 G3 By Hp Hy : n ¢
65, = 10% ug,fc = 0.80; ¥° = 3.30

20.184% 2.3954 |0.1711 | -9.37%0 [ -3.8602 |-2.0188 | -3h4.08% | -18.18% [ -9.690 | -0.110 [ 2.965 | 13.457
20.0 2.5458 | 1738 | -T7.124k9 | -5.5008 | -1.7511 | -22.652 | -26.212 | -8.199 | -.129 | 3.091 | 1k.057
19.75 2.5149 | .1776 | -5.2801 | -6.4768 | -1.4976 | -12.965 | -31.141 |-6.767| -.156 | 3.273 | 1k.917
19.5 2.5854 | .1816 | -k.1433 | -6.8226 |-1.3175 | ~6.726 {-33.019 [-5.732| -.185 | 3.461 |15.801
19.25 2. .1857 | -3.3839 | -6.8%0% | -1.1822 -2,335 | -33.51% | -4.939 | -.216 | 3.653 |16.691
19.0 2.7331 | .1900 | -2.8469 | -6.8278 |-1.076h4 .963 | -33.330 |-%.305| -.2k8 | 3.847 |17.583
18.75 2.8111 | .1945 | -2.4506 | -6.7030 | -.991L 3.568 | -32.806 | -3.781 .282 | h.olb2 [18.473
18.5 2.8925 | .1993 | -2.1482 | -6.5500 | -.9207 5.715 | -32.109 | -3.338 | -.318 | L4.237 |19.357
18.25 2.9781 | .2044 | -1.9113 |-6.3867 | -.8615 7.555 | -31.328 [ -2.954 | -.355 | k.433 |20.236
18.0 3.0679 | .2097 | -1.T7216 | -6.2228 | -.8111 9.175 | -30.509 | -2.616 | -.39% | %.630 | 21.111
17.5 3.2625 | .221k | -1.4385 |-5.9112 | -.7296 | 12.003 | -28.866 |-2.040| -.478 | 5.027 | 22.843
17.0 3.4813 | .2346{-1.2390 | -5.6337 { -. 14.543 | -27.28% | -1.55% | -.568 | 5.428 | 2h.553
15.5 3.7300 | .2497 [ -1.091k {-5.3943 | -.6162 16.993 | -25.788 | -1.12k | -.665 | 5.834 | 26.237
16.0 0163 | .2673| -.9780|-5.1922 | -.57155 | 19.k97|-2L4.369 | -.728| -.T70 | 6.247 | 27.89L
15.5 k.3507 | .2879| -.8879 |-5.0254 | -.5L418 22.181 | -23.004 | -.349 | -.882 | 6.668 |29.510
15.0 Lowi6 | .3125 | -.8143 |-4.8920 | -.513T | 25.178 | -21.703 .029 { -1.001 | 7.098 | 31.085
14,5 5.2276 | .32k | -.7526 | -k.7908 | -.k901 28,644 | -20.115 21 -1.128 | 7.539 | 32.612
1k.0 5.8219 | .3797| -.6997 |-k.7211 | -.%¥701 | 32.796 | -19.128 BU5 | -1.263 | 7.993 | 3k.082
13.5 6.5792 | her2| -.6536 | -4.683k | -.4531 37.977 | ~17.817 | 1.327| -1.406 | 8.463 | 35.487
13.0 7. ook | -.6128 | -k.6791 ] -.4388 | Lhh.69k | -16.451 | 1.902| -1.557 | 8.951 | 36.813
12.5 8.972 578 | -.5764 | -b.T110 | -.%270- | 53.902 | -14.996 | 2.634] -1.716 | 9.461 | 38.039
12.0 11.045 .T10 =540 | -4, 7836 | -.b1Th 67.45h [ -13.407 [ 3.645| -1.884 | 9.997 | 39.143
11.5 14, h79 929 | -.5158 | -4.9035 | -.ko97 | 89.692]-11.660 | 5.215| -2.062 |10.565 | ko.09%
11.0 21.31%F |[1.364 -.4926 1 -5.0805 | -.hoko | 133.568 | -9.658 | 8.176] -2.250 {11.173 | %0.8k9
10.5 1.7h8 |2.699 | -.4760|-5.3293 | -.k005 | 263.760 | -7.318 |16.663 | -2.149 u.aig %1.359
10 -] oo [:- I I et il @ | m—m——— 12.5 - ——

85, = 10% uso/c = 0.90; M° = 5.h2

15.0128 k.hg9 [0.209 |-1.111 |-2.808 |-0.824 22.6h | -26.13 |-6.66 |-0.197 | 3.045|23.321
15.0 4,511 .108 |-1.020 |-2.881 | -.818 23.81 |-26.81 |-6.57 | -.198 | 3.05L | 23.375
14.8 L.708 .13 .109 | -3.7k2 | -.736 39.41 [-34.72 |{-5.50 | -.218 | 3.151 | 2k.234
14.6 4.918 .118 .850 |-k.239 -.67% 5L.43 {-39.31 |-k.62 -.239 | 3.256 | 25.1210
1k % 5.14% 122 1.357 |-k.527 ~-.622 61.36 [-k1.97 |-3.88 -.260 | 3.365 |26.018
4.2 5.388 127 1.720 | -4.693% ~.580 T70.15 | -43.38 | -3.24 -.282 | 3.477 | 26.919
1k.0 5.653 .133 1.985 {-4.783 -.545 78.28 |-, 01 |[-2.66 | -.305| 3.591 | 27.816
13.8 5.943 139 | 2.185 |[-k.826 | -.%16 86.13 |-Mk.12 |-2.13 -. 3.707 | 28.70%
13.6 6.263 .1h6 | 2.337 |-4.84k0 | -.hko1 93.98 |-43.85 [-1.6k | -.352 | 3.82L|[29.580
13.4 6.617 .15h4 2.h54 | -4.837 -.k70 102.07 |-43.32 |-1.17 -.377 | 3.943 | 30.442
13.2 7.013 162 | 2.547 | -4.825 -5 110.62 | -ho.58 -.TL -.403 | %.063|31.288
13.0 7.558 272 | 2.625 (-4.808 | -.434h | 119.88 |-41.68 | -.25 | -.%30 | k.185| 32.115
12.8 7.96k .183 | 2.690 |-Lk.790 | -.k20 | 130.09 |-40.65 .20 | -.457 | h.309|32.921
12.6 8.545 195 | 2.THe [ -4TTS -.hot 1k1.53 | -39.52 .68 -.485 | 4.k3h | 33.704
12.4 9.219 .210 2.789 | -4.765 -.395 154%.56 | -38.28 1.18 -.51k | L4.561 | 34.461
12.2 10.01% .228 2.828 (-4.761 -.385 169.66 | -36.94 1.72 -.544 | 4.660 | 33.190
12.0 10.962 .249 2.86h | -k.766 -.377 187.51 | -35.50 2.32 | -.57h | 4.822 ] 35.8%0
11.8 12.116 275 2.897 |-h.781 -.369 209.08 | -33.96 2.99 -.605 | %.956 | 36.555
11.6 13.556 .307 2.927 | -%.807 -.362 235. -32.31 3.77 -.637 | 5.093 | 37.182
11.% 15.396 .348 | 2.954 |-4.846 | -.3%5 | 269.85 |-30.5% | k.72 | -.670 | 5.233|37.768
11.2 17.846 .ho3 2.979 | -%.899 -.350 31k.81 | -28.63 5.91 | -.70% | 5.377]36.311
11.0 21.268 k79 3.002 |-k.969 -.348 377.47 | -26.56 7.50 -.739 | 5.525|38.807
10.8 26.388 .59% | 3.022 |-5.058 -.343 §70.76 | -2%.31 9.78 | -.7Th | 5.678 | 39.250
10.6 3k.90% R (55] 3.040 | -5.169 -.3k0 625.42 | -21.86 |13.4% -.810 | 5.836]39.636
10.4 51.950 | 1.167 3.055 |-5.305 -.338 934.09 | -19.16 |20.56 -.846 | 6.000 | 39.961
10.2 102.985 | 2.312 3.065 [-5.471 -.337 |1856.35 | -16.18 | ki.hkT -.882 21119. Lo.228
10.0 @ @ I ® o .3 o
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NACA TN 2505
TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND
VARIABLES &, 7, AND ¢ - Continued
0 -

(eg) 51 Fy Gy Go Gy 5 Hy Hy £ n ¢

8, = 20°, u,,o/c = 0.65; M° = 2,51
33.0k52 { 1.7177 |0.1963 |-5.291% | -1.2739 |-0.6912 | -1k.002 -6.1995 {-3.0889 | -0.293 | 2,166 | 8.736
33 1.7245 | .1967 [-5.2178 |-1.3306 | -.6B26 | -13.6145 -6.5793 [-3.0358 | -.206 | 2.171 | 8.763
32.5 1.801k | 201k |-h.5517 | -1.7834 | -.6012 | -10 0189 | -8.6989 | -2.5288 [ -.331 [2.237 | 9.092
32 1.8826 | .2066 |-h.oT%2 |-2.0317 | -.5399 -7.1628 | -9.9337 |-2.1289 | -.367]2.308 | 9.4ko
31.5 1.9692 | .2125 [-3.7127 | -2.1697 | -.h918 -5.1203 | -10.6193 | -1.7993 | -. 2.38L | 9.795
31 2.062L | .2190 |-3.4381 | -2.24k9 | -.4531 -3.2917 1 -10.9748 [ -1.5180 | -.hkk2 | 2.456 | 10.231
30.5 2.1624 | .2263.|-3.2145 | -2.26829 | -.h21k -1.6978 [ -11.1328 | -1.2709 | -.482 | 2.531 | 10.507
30 2.2712 | .234h |-3.031h (-2.2685 | -.3948 -.2622 | -11.1532 | -1.0483 | -.%23 [ 2.607 | 10.860
29.5 2.3902 | .2435 |-2.8788 | -2.3006 | -. 1.0690 1 -11.0812 [ -.8L32 | -.565 | 2.683 | 11.209
29 2,5210 | .2537 |-2.7Thk96 | -2.2950 | -.3526 2.3367 | -10.9485 | -.6936| -. 2.759 | 11.555
28.5 2,6657 | .2652 | -2.6391 | -2.2853 | -.3357 3.573h [ -10.7649 | -.4653 | -.652 | 2.835 | 11.896
28 2.8211 | .2781 {-2.5436 | -2.27k0 | -.3211 4.8082 | ~10.5501L | -.2843 | -.697 | 2.911 12,227
27.5 3.0085 [ .2929 | -2.k60k | -2.2630 | ~.3081 6.067h | -10.2986 | -.10k0 | -.743 [ 2.588 12.550
27 3.2k | .3099 | -2.3876 | -2.253h | -.2967 7.3803 [ -10.0256 0790 | -. 3.065 | 12.86%
26.5 3.4501 | .3296 |-2.3232 | -2.262 | -,2867 8.7m72 | -9.7328 .2686 | -.838 [ 3.142 | 13.169
26 3.7233 | .3527 {-2.2663 | -2.2424 | -.27TT 10.2951 | -9.lau7 L4687 | -.886|3.220 | 13.46k
25.5 h.obh3 | 3800 [-2.2158 | -2.2h25 | -.2607 | 11.9809 [ -9.07h9 | .68uE . =935 [ 3.298 | 13.7h7
25 hlot2 | g8 | -2.1710 | -2.2472 | -.0627 13.8971 | -8.7100 .9231 | -.985 | 3.377 [ 1k.017
24,5 h.8927 1 .4531 |-2.1313 | -2.2572 | -.2566 16,1298 | -8.3225 | 1.1932 [ -1.036 | 3.1%7 1k,272
24 5.4118 | .5036 | -2.0960 | -2.2731 | -.2510 18.807% | -7.906 1.508" | -1.087 [ 3.538 { 1k.512
23.5 6.2129 | 5686 [ -2.0652 | -2,2958 | -.2ks3 22,127 ~T.459 1.889 |-1.139]3.621 | 1k.734
23 T.1971 | .6552 | -2.0381 | -2.3262 | -.oho2 26.17 -6.973 2,368 |-1.191 | 3.706 | 14.936
22,5 8.5702 | .TT67 |-2.0150 [ -2.3653 | -.2387 | 32.26L -6.443 | 3,006 |-1.243]3.793]15.115
22 10.624 <939 |-1.9956 | -2.h1h3 | -.2358 | k0.833 -5.865 | 3.922 [-1.295]3.882 {15.267
21.5 14.036 |1.263 |-1.9800 [ -2.4748 | -.2336 54,848 -5.229 5.392 |[-1.345]3.974 | 15.387
21 20.8h9 [1.872 ]-1.9685 [-2,5488 | -.2319 82,465 ~4.524 8.243 | -1.392| k.070 | 15.465
20,5 41.255 |3.699 |-1.9611 {-2.6387 | ~.2308 | 164.408 -3.732 | 16.605 |-1.531 [ k.170 | 15.470
20 @ @ [ S [P, @ e | Bo275 | meeeee

930n20°,u50/c-075,}6°-336
28,1798 [ 2.6738 [0.1536 | -3.2411 | -1.2036 |-0.h7k0 -2.4775 | -9.1430 | -2.6656 | -0.397 | 2.381 13.058
28 2.7375 | .1559 | -3.03%6 | -1.3811 | -.k526 -.3678 { -10.439k | -2 -.130 | 2.405 | 13.231
27.5 .9279 | .1632 | -2.6556 | -1.7169 | -. L.7hho | -12.9466 | -1.8962 | -.hk6 | 2.478 | 13.75k
27 3.1k | L1717 [ -2.2766 | -1.9100 | -.3672 9.1888 | -14.5089 | ~1.4364 | -.482 ] 2,555 | 1h.277
26.5 3.3840 | .1818 | -2.0433 | -2.0243 | -.3381 13.ig% -15.230 |-1.028 -.519 | 2.635 | 14.819
26 3.663k | .1936 | -1.86b1 | -2.0936 | -.3146 17. -15.637 -.650 -.557 | 2.717 | 15.363
25.5 3.9900 | .2079 [-1.7227 | -2.1372 | -.2953 | 21.628 |-15.751 | - 285 | -.596 [ 2.801 ] 15.903
25 k37821 .2051 |-1.6088 | -2.1668 | -.279% 26.19k | -15.6k46 081 ~-.636 | 2.886 | 16.435
2k.5 L.BE8T | .2L463 | -1.5157 | -2.1899 | -. 31.325 |-15.370 . 1] -.677 | 2.972 | 16.957
24 5.4326 | .2729 | -1.4385 | -2.2117 | -.2550 37.331 |-1k.9h4 .876 ~-.T19 | 3.060 | 17.k6%
23.5 6.1785  .3075 | -1.37k3 [ -2.236L | -.2458 bk, 631 |-1k.380 1.346 -.T61 | 3.150 | 17.955
23 7.1673 | .3535 |-1.3205 | -2.2663 | -.2371 | 53.970 ~13.691 1.908 | -.80k|3.242 [18.425
22,5 8.5449 | W84 [-1.2757 | -2.3051 -.2315 | 66.552 |-12. 2.625 | -.847(3.336 |18.872
22 0.6027 | .5159 |-1.2361 [-2.3555 | -.226L | 84.87h -11.879 3.616 | -.890]3.433 |19.293
21.5 14.020 679 }|-1.2100 |-2.k207 | -. 114.676 |-10.73% | 5.189 -.933 | 3.53k | 19.686
21 20.837 [1.005 |-1.188k {-2.5043 | -.2196 | 173.262 -9.399 8.084 -.97h | 3.639 | 20.053
20.% k1.2h6 [1.985 |-1.17h6 |-2.6112 -.2178 | 346.218 -7.836 [16.522 |-1.010]3.730 | 20.510
20 @ o @ | emeea—— © ——— 3_869 ———

85, = 20% ug,fc = 0.85; M = 5.5k
24,133 | k7991 | 0.101% | -0.5386 | -1.15%0 | -0.2755 39.37 '|-19.17 |-1.82 |-0.517|2.b71 | 17.529
24,0 5.327h | .1102| -.1718 | -1.5183 | -.2L96 | TB.62 -23.90 ' |-1.0k -.535 | 2.531 | 18.403
23.5 6.0890 | .1232 L1101 | -1.7753 | - .| 101.29 -26.83 -.20 ~.556 | 2.607 | 19.505
23.0 7.0520 | .1hko9 .3019 | -1.9%06 | -.2106 | 127.82 -28.10 .67 -.576 | 2.689 | 20.666
22,5 8.4827 | .1660 -4381 | -2.0612 | -.1980 | 162.06 |-28.19 1.6k . | -.595 | 2.77T | 21.863
22,0 10.5528 [ 2039 | .537h | -2.16k7 | -.1885.| 210.k2 [ -27.3h 2.85 -.613 | 2,869 | 23.087
21.5 13.982 .267 .6103 | -2.2698 | -.,181% | 287.84 |-25.68 k.59 -.628 | 2.967 | 24.338
21.25 16.717 .318 .6384 | -2.32716 | -.1788 | 348.36 -2k,51 5.87. ~-.634 | 3.018 | 2k.978
21.0 20.811 .395 .6620 | -2.3915 | -.1766 | 438,11 |-23.15 7.70 -.638 | 3.071 | 25.635
20.75 27.62% .523 6827 -2.4633 | -.17h9 | 586.32 -21.54 10.64 -.640 [ 3.126 .322
20.5 k.23% | .TT9 6955 | -2.5449 [ ~.1737 | BB0.3k .[-19.73 [16.33 -.638 | 3.183 | 27.069
20.25 | 82.030 |1.549 .7033 | -2.6388 {. -.1729 |1758. 1-17.67 |33.03 -.628 ggoh.;a 27.967
20 o me - o | mmme—— w | mmm——- . —————-=

é



58 NACA TN 2505

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H ARD

VARIABLES E, 10, AND { - Continued

]
(deg) Fl F3 Gl G2 - G3 Hl 32 H3 £ n t
05, = 309 uﬂolc = 0.35; M° = 1.515
63.3199| 0.5756 |0.2398]-5.6588|-0.4028 |-0.2647 [-13.6739 -1.6360|-0.9703 |-0.3810.877| 1.686
63 5846 .2115]-5.5395| -.4613| -.2595]-13.2030 -1.8696| -.9359| -.388| .869| 1.67k
62 .6132| .ek72{-5.2102| -.6100| -.2U53 |-11.8888|-2.4651 | -.8361 -.ho| .847| 1.6
61 .6431| .2531)-k.9341| -.7203| -.2334|-10.TT725|-2.90TT| ~.T>23 -.h31| .826| 1.624
€0 L6743 | .2595|-1.6988| -.80ko | -.2233| -9.7876|-3.2k22| -.6T55 -.51| .806] 1.609
59 .7069| .2663|-k.h955| -.8688| -.2146| -8.9229]-3.4972| -.605k ~.bm] o787 1.599
58 .2l .2137|-%.3179) -.9197| -.2069| -8.1487|-3.6927| -.5405 -.490] .768| 1.592
57 T 281k |-k.161k| -.9603 | -.2002] -T7.4469}-3.8422 =797l -.508] .TH9] 1.588
'| 56 .8156| .2899|-4.0224| -.9932| -.1941| -6.8055|-3.9555] -.4219| -.525 730 1.587
55 .8562| .2989[-3.8981|-1.0203 | -.1887| -6.2120|-4.0388 -.3664| ~.541] 711 1.587
54 .899k| .3088(-3.7864|-1.04291 -.1839| -5.6591|-4.0978} -.3125] -.557 .692] 1.589
53 956 .3196|-3.6855|-1.0623 | -.179%| -5.1399|-k.1370( -.2598| -.572] .673] 1.593
52 .9953] .3312|-3.59k2|-1.0792} -.1755( -L.64TT|-4.1585 -.2076| -.586] .654] 1.598
51 1.0488| .3kko|-3.5110[-1.0945 -.1718( -4.1783[-k.16L49| -.1554| -.599 .634] 1.604
50 1.1068| .3581|-3.%352]-1.1082| -.1684| -3.7265|-4.1576] ~.1029 -,611] .614] 1.611
49 1.1700| .3736|-3.3659|-1.1213 | -.1652] -3.2884|-4,1381 ~.ohgk| -.623| .504] 1.619
18 1.2392| .3908|-3.302k|-1.13k2} -.1623| -2.8600|-k.106T| .0055| - 634 .574| 1.628
W7 1.3156| .ko99|-3.2ukk{-1.1k70| -.1596| -2.437k{-L.06U5| .0625| -.64k| .553 1.638
TS 1.%ook4| .4315|-3.1911|-1.1602| -.1573| -2.0170|-k.0115| .1223] - 653| .532| 1.648
45 1.4953| .4560(-3.1k22)-1.1741 | ~-.1549| ~1.5944-3.9481 .1856] -.661| .511| 1.659
L 1.6025| .4839)-3.0974|-1.1890] -.1528| -1.1646|-3.8742| .2535 -.668| .hgo| 1.6TL
k3 1.7247| .5160)-3.0564]-1.2052] -.1509| -.7226(-3.7885| .32T3 -.67h} .u68| 1.68L
Lo 1.8657| .5536|-3.0189|-1.2229| -.1k92| -.2612|-3.6912( .k085 -.679] .446| 1.697
il 2.0307| .5976|-2.98k7|-1.2k26| -.1475 .2082(-3.5828| .L4995| -.683] .bek| 1.711
ko 2.2068| .6506|-2.9536(-1.2645] -.1L459 .7570|-3.4605| .6032| -.686] .ho2| 1.726
39 2.4643| .7i52(-2.9256(-1.2801 | -.18k6] 1.3W12]-3.3236| .72M1 -.687} .380( 1.7k2
38 2.7586| .7957|-2.9005|-1.3167| -.1433| 2.00k0(-3.1706| .8684| -.687] .358} 1.759
37 3.1340| .8991|-2.8782|-1.34k79| -.1k22| 2.7815|-2.9995 1.0462]| -.686| .336] L.TTT
36 3.6310/1.0366|-2.8586|-1.3833| -.1k12| 3.7334{-2.8084| 1.27k2 -.683| .314] 1.796
35 }.322 [1.229 |-2.8k17{-1.4235| -.1k03| L.9658]-2.5942 1.5820| -.678| .292{ 1.817
3h 5.354 |1.517 |-2.8277|-1.4693| -.1395| 6.6894]|-2.3534| 2.0291 -.671| .270| 1.8L0
33 7.066 [1.997 |-2.8165|-1.5217| -.1390] 9.3956|-2.0820| 2.753k -.662| .248] 1.866
32 10.477 [2.954 |-2.8083]|-1.5819| -.1385| 1k.5498(-1.T7kk 4.1682| -.649| .227| 1.897
31 20.686 |5.827 |-2.8031|-1.651k| -.1383| 29.4903|-1.k246] 8.3384} -.629| .207} 1.937
30 © ® ©  |eme———— o  |emmee= 188 |-
0g, = 30% ug,fc = 0.55; MO = 2.33
44.1237] 1.51390.2919|-k.1222|-0.6533 |-0.3194] -9.4820|-4.0531|-1.4287]-0.519|1.669] T7.321
by 1.50289| .1930|-4.0623| -.6959| -.31k0| -9.0885|-4.3020-1.3811 | -.525[1.671| 7.345
43 1.6584| .2032|-3.6648| -.9hk7| -.2781] -6.2917(-5.7816|-1.040T| -.573[1.697) 7.580
Lo 1.8057| .2155|-3.376%(-1.0869 | -.251k| -3.9464|-6.6285| -.7551| ~.622{1.726| T7.834
Iy 1.9764| .2303|-3.1676|-1.1730| -.2309| -1.8409|-7.1031| -.5003| -.671|1.757| 8.098
Lo 2.1778| .ok8h|-2.9873|-1.22B1| -.2151| .1649(-7.3365| -.2608| -.720(1.789| 8.366
39 2.4202| .2708|-2.8511|-1.266k{ -.2016| 2.1860|-7.k001| -.0240| -.769|1.821 8.635
38 2.7192| .2990(-2.7409|-1.2965| -.1910| L.3070|-7.3343| .2219 -.81811.853| 8.901
37 3.0992| .3355|-2.6508|-1.3238| -.1822| 6.6792|-7.1600| .k910| -.867|1.886 9.162
36 3.6007| .3846|-2.5771|-1.3522| -.1751| 9.4778|-6.8870| .8028| -.916)1.919| 9.416
35 4.2068] .1536]-2.5172|-1.3850] -.1693| 13.012 |-6.517 | 1.190 -.96411.952| 9.662
34 5.3330| .5574|-2.4692|-1.ke52| -.1646| 17.878 |-6.046 | 1.T13 |-1.01111.986| 9.897
33 7.0493| .7309|-2.4210|-1.4759| -.1610| 25.113 [-5.462 | 2.512 |-1.057|2.021 10.120
32 10.465 |1.079 |-2.k052]-1.5406] -.1585| 39.674% |-L4.748 | 4.003 |-1.099 2.058(10.333
31 20.678 |2.125 |-2.3885|-1.6240| -.1569| 81.24k |-3.873 | 8.253 |-1.134]2.09710.550
30 © © ® |eeaaa -— ® |emma—— 2.139 |~=emm=
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TABLE 1.~ COEFFICIENT FUNCTIONS F, G, AND H AND
VARIABIES £, 10, AND ¢ - Contimued
(dgg) S & b2 G3 5 L 5 g [0 ¢
8g, = 30% uBO/c = 0,65; M° = 3,16

39.1748| 2.3176(0.1561}-3.1456|-0.6787|-0.2556| -1.983| -~6.428|-1.248]-0.644]1.913 9.913
39.0 2.3652] .1584|-3.070k| -.Th18| -.2b9k| -.98%4| -6.941|-1.153| -.652{1.919] 9.985
38.75 2.4361| .1618|-2.9725| -,8202| ~.2M12 .398| -7.569|-1.022{ ~.663|1.928(10.093
38.5 2.5107 .1655 -2.884%( ~.8871| ~.2336] 1.738| -8.10%) -.897| -.67%|1.937{10.205
38.25 2.5894| .1694|-2,8046| ~.9ul5| -, 2268| 3,049 -8.556{ -.T76| -.685|1.9%7|10.320
38.0 2,6725| .1737|-2.7324| -.99k0| -.2204| L.3k1| -8.935| -.658]| -.696(1.957|10.1438
37.75 2,7606| .1781|-2.6663|-1.0370| -.2154| 5.623| -9.259| -.543| -.707|1.967|10.559
37.5 2,8540| .1830|-2.6060(-1,07h6| -.2093| 6.905| -9.530| -.430| -.T18|1. 978 |10.682
37.25 2.9535| .1881]-2,5507|-1.107T| -.2043| 8.195| -9.747| ~.319| -.729{1.989 [10.807
37.0 3.0596| .1937|-2.4996(-1.1370| -.1997| 9.503| -9.931| -.207| -.Tho|2.00010.93%
36.75 3.1731| .1997|-2.4527|-1.1631| ~.195%| 10.836[-10.070| -.096| -.751|2.011{11.062
36.50 3.2919| .2062[-2,4094{-1.1867| ~.191%| 12.203|-10.177| .016} -.T61|2.023|11.191
36.25 3.4260| .2132{-2.3692{-1.2080} -.1878{ 13.614{-10.256| .129| -.T71|2.035|11.321
36.0 3.5675| .2209]-2.3320(-1.2276| -.1843| 15.082(-10.356| .246| -.781|2.047|11.k52
35.75 3.7208| .2293|-2,2974|-1.2458( -,1811| 16.615(-10.352] .365| -.791]2.059|11.58%
35.50 3.8875| .2384|-2.2654|-1,2629| -.1782| 18.227|-10.327| .487| -.801|2.071|12.716
35.25 4.0695| .2484}-2.2355|-1.2790| -.1754| 19.935(-10.302| .615| -.811|2.08% 11.849
35.0 L.2693( .2595(-2.2078|-1.2945| -.1728| 21.755(-10.256| .748| ~.821|2.097 11.981
34,75 4, 4894 | .2717{~2.1820|-1.3096| -.1703{ 23.708|-10.191] .889| -.831|2.110 12,117
34,50 4.7334| ,2854[-2.1580(-1.324h| -.1680| 25.817(-10.101| 1.038| -.8k1|2.123|12.247
34,25 5.0055] .3007}~-2.1356(-1.3392| -.1660| 28.116] ~9.995| 1.198| -.851|2.136]{12.380
3k.0 5.3110| .3179|-2.1149(-1.35k1| -.16k0| 30.643| -9.867| 1.370| -.861|2.150{12.513
33.75 5.6564| .3374|-2.0957(-1.3693| -.1622| 33.441| ~9.722| 1.560| -.870(2.164|12.646
33.50 6.0503 | .3598{-2.07T9|-1.38L49| ~.1606| 36.5T7| ~9.557| 1.766] -.879|2.178|12.779
33.25 6.5041| .3853(-2.061k4(~1.k4010] -.1589| Lo.149| -9.38%| 1.997| -.888|2.192|12.912
33.0 7.0325| .4158|-2, 0464 |-1. 4178 -.1576| 44.188| -9.168| 2.259| -.897|2.206(13.045
32 ™ 7.6561| .4515(-2.0347|-1.4355| -.1563| 48.916| -8.945| 2.558| -.905|2.221.[13.178
32150 8.4033{ .49k ~2,0198|-1.45k1| -.1550( 54.509| -8.703| 2.908| -.913|2.236(13.311
32,25 9.3154| .5469-2.0085]-1.4739 | -.15k0| 61.244{ -8.439] 3.325| -.921|2.251 |13. M5
32,0 10.45% | .613 [-1.9982|-1.4950] -.1530| 69.56 | -8.15 | 3.83 | -.928|2.267(13.580
31.75 [12.916 | .697 |~1.9891(-1.5176| -.1522| 80.16 | -7.8% | kb7 | -.934(2.283|13.726
31.50 [13.86k | .810 |-1.9812{-1.5M17] -.1516| 94,09 | -7.51 | 5.31 | -.939|2.299[13.855
31.25 [16.588 | .967 [-1.9745|-1.567T7| ~.1509|113.46 | -7.16 | 6.46 | -.943|2.316[13.997
31.0 20.672 |1.20h4 |-1.9688(-1.5956} ~.1505(142.31 | -6.78 | 8.17 | ~.9k6|2.333|1k.1k5
30.75 [27.47h |1.599 |-1.964L4]-1.6258| -.1500{190.10 | -6.37 |10.97 | -.9%7]|2.351 |1k. 30k
30.5 k1,072 2,389 |-1.9612]-1.6584| ~.1k98|285.20 | -5.93 [16.51 | -.9kk|2.369 |1k. k82
30.25 [81.852 [k.760 [-1.9593]-1.6938] -.1496(569.68 | -5.46 |33.10 | - 93512, ggg 1k, 702
30.0 0 -] o |- © 2.
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TAﬁI.El.— COEFFICIENT FURCTIONS F, G, AND H AND

VARIABLES £, 1, ARD { - Concluded
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8g, = 30% uBo/c = 0.70; M° = 3.85
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PERRERPOSOSTREAUBURRRRRELY

BEESES

GYE &Yd 3Vvd 8Vd 3vd 3Vd gvd &

BEBRE

w
[=]

0.1365|-2. 6024]-0.6856[-0.2198 7.3361] -8.5699|-1.0607|-0.T712]2.009]11.186
.1367}-2.5948| -.6927| -.2192 7.1973] -8.6338(-2.0485]| -. 2.010{11.197
.1405|-2.k950) -.7837| -.2116] 9.T7280| -9.4811| -.881%| -.722|2,019]|11.351
L1481 -2, ho62| -.8608{ -.2048| 11.913 [-10.167 | -.720 | -.731|2.029]|11.512
.1hok|-2.3271| -.9265{ -.1986] 1k.078 |-10.728 | -.562 | -.Tho|2.039|11.6T9
.1543|-2.2561| ~.9831) ~.1929} 16.245 |-11.190 | -.b4oT | -.748|2.050[11.851
.1596|-2.1921)-1.0321| -.1877| 18.438 |-11.550 | -.254 | -.T56|2.062|12.027
.1655(-2.1342|-1.0750| -.1830| 20.678 |-11.841 | -.100 | -.764|2.07h|12.207
.1719|-2.0818{-1.1129| -.1786 22.990 |-12.053 | .054% | -.T72|2.086| 12,390
.1790]-2.0341{-1.2467| -.1747| 25.396 |-12.213 .212 | -.780{2.099|12.575
.1869|-1.9907|-2.1T71| -.1710| 27.923 |-12.318 .373 | -.788{2.112|12.762
.1956|-1.9509|-1.2049 | -.1676| 30.603 |-12.365 .539 | -.796|2.126/12.951
.2052[-1.9146}-1.2306| -.1646] 33.472 |-12.373 .713 | -.803]2.140(13.1%2
.2160]-1.8813|~-1.2547{ -.1617| 36.570 |-12.338 .896 | -.810j2.154|13.33%
.2283]-1.8509(-1.2776| ~.1591] 39.951 |-12.271 { 1.090 | ~-.817|2.169]|13.527
.2h22(-1.8230(|-1.2997| -.1567| 43.679 |-12.164 | 1.299 | -.824(2.184{13,722
.2581|-1.7975|-1.3213| -.154%]| 47.832 [-12.023 | 1.527 { -.830|2.199{13.917
L2765 |-1. TTh2(-2. 3427 -.1525) 52.517 [-11.853 | L.T77 | -.836{2.215|1k, 113
.2979|-1.7530|-1.3643| -.1506| 57.872 |-11.6L45 | 2.057 | -.842|2.231|1k.310
.3234[-1.7336|-1.3863| -.1489| 6L4.085 |-11.409 | 2.374 | -.847|2.2k7|1%.508
.3540(-1. 7261 |-1. hoso| -.ab7h| T1.K19 |-22.138 | 2.7h2 | -.852|2.264|1%. 707
.3915|-1.700%|-1. 4325 -.1k61| 8o0.252 |-10.839 { 3.175 | -.856|2.281|1k.907
.38 |-1.6863|-1.4573] -.1448| 91.152 |-10.506 | 3.701 | -.859|2.299{15.109
99 [-1.6739]-1.4835] -.1438| 105.002 [-10.236 | &.357 | -.861|2.317]|15.31%
.579 |-1.6628]-1.5114 -.1h427| 223.285 | -9.738 | 5.211 | -.862|2.336{15.522

.692 |-1.65311-1.5hk{ -.ak17| 148.656 | -9.301 | 6.379 | ~.861|2.355)15.735
.861 |-1.6460[-1.5735| -.1416| 186.431 | -8.828 | 8.099 | -.858{2.375(15.956
1.143 [-1.6406]-1.6083| -.1405] 249.018 | -8.310 |10.921 | -.85212.395|16.189
1.708 |-1.635T|-1.6461| -.1405| 373.615 | -7.751 |16.4%96 | -.8k1|2.}16(26. 443
3.502 |-1.6331|-1.6872| -.1k4ok| T46.260 | -7.148 |33.084 | -.820 2.ﬁ28 16.743
- o |eem——- ™ 2.461

85, = 30% u3°/c = 0.75; M° = 5,011

w
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BOEEEPULs

e e
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Svad avad gvd {vad gvdefsvy

TTE

[¥)
o

0.1158|-1.9555|-0.6906|-0.1830| 27.724 [-12.093 |-0.773k4|-0.782]2.090]12,060
bl .118k4(-1.9027{ -.T4k6( -.1801| 29.898 |-12.720 | -.65T9| ~-.T85{2.095[12.191
.1237[-1.8119| -.8349| -.1749| 3k.082 [-13.732 | -.4409} ~.790|2.105|12. 451
.1295(-1.7323( -.9116| -.1702| 38.352 [-14.537 | -.2260| ~.795|2.116|12.725
L1359 [-1.6620( -.9TTh| -.2660( 42.773 |-15.168 | -.0105] -.799|2.128(13.010
L1431 ]-1.5997|-1.0345] -.1622| u7.h16 ]-15.651 .2078| -.803|2.141|13.305
.1511.|-1.5842|-1.084k6| ~.1587| 52.349 [-16.005 4315 -.807]2.155(13.610
.1600|-1. 4947 |-1.1292| -.1556| 57.665 [-16.247 L6641 | -.810(2.170]|13.923
L1702)-1.45051{-1.1695| -.1527| 63.458 |-16.390 .9034| -.813|2.185|1k4. 24k
.1818}-2.1108 |-1.2065] ~. 69.861 |-16.443 | 1.1689| -.816|2.201|1k.573
.1951}-1.3751]-1.2h10) -.1478| T7.030 |-16.%15 | 1.4505| -.818|2.217[1%.909
.2107|-1.3432}-1.2738} -.1458 | 85.1%0 |[-16.303 | 1.7597| ~.820|2.23%4]15.252
.2292]-1.3145 [-1.3055| -.1438 | 9k.595 1-16.135 | 2.105k| -~.821{2.252]15.602
.2513]-1.2889 [-1.3367| -.1k22| 105.67 |-15.892 | 2.4g99k| -.822!2.270(|15.958
-2783}-1.2662|-1.3679 | -.1%0T| 118.97 |-15.582 | 2.9592| ~.822|2.289|16.325
.3120 |-1.2k60(-1.3996| -.1393] 135.02 |-15.208 | 3.5095| ~.821|2.308 |16.701L
.3554 |-1.2283 |-1. 4324 | ~.1382| 156,11 |-14.768 | 4.1905| -.819(2.328(17.089
.132|-1.2130-1.4666 |--.21372 | 183.48 [-14.263 | 5.0679| -.816[2.34917.493
.4932|-1.2001 [-1.5028 | -.1363| 22144 [|-13.601 | 6.2601| -.810(2.371(17.918
.615 |-1.189%|-1.5M15| -.1356 | 277.91 [-13.048 | 8.004 | -.802}2.393|18.369
.818 |-1.1810]-1.5832| -.1351| 371.%3 [-12.332 [10.84% | -.T91|2.%16]18.860
1,222 [-1.1748 |-1.628k | -.1347] 557.51 |-11.538 |(16.849 | -.T73(|2.440]19.421
2,435 |-1.1711(-1.6778 ] -.1344 1113.8 ~10.660 |33.059 | -.Thk 2.%5 20,125
Y ® | |eemem——- o 2,491

é
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TABLE 2. - RWO/RSO AND M° AT VARIOUS

VALUES OF 65,

65, = 10° es(; = 20° 05, = 30°
Mo Rwoleo MO qu/ Rso MO Rwo / Rso
1.09 7.63 1.22 ~0.275 1.52 0.179
1.60 bo,1 1.65 2.83 2.33 1.30
2.39 12.0 2.51 - 2,19 3.16 1.24
3.30 5.23 3.37 1.72 3.85 1.17
5.542 2.35 5.55 1.30 5.01 1.11
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Figure 1.- General notations.
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Shock

Figure 2.- Diagram illustrating formulastion of boundary conditions
at shock wave.
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Figure 3.- Velocity components at a point on shock.
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Figure k4.~ Variation of ratio ofcurvature with M°.

Free-stream Mach number, M°

Pgs and h6 taken from reference 7.
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Figure 5.- Variation of ratio of curvature with M° in two-
dimensional case.
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